Repository logo
  • Log In
    New user? Click here to register. Have you forgotten your password?
  • Log In
    New user? Click here to register. Have you forgotten your password?
Repository logo
  1. Home
  2. Browse by Author

Browsing by Author "Abusleme Hoffman A. C."

Item
A search for heavy Higgs bosons decaying into vector bosons in same-sign two-lepton final states in pp collisions at ?s=13 TeV with the ATLAS detector
(SPRINGER, 2023/07/26) Aad G.; Abbott B.; Abbott D. C.; Abeling K.; Abidi S. H.; Aboulhorma A.; Abramowicz H.; Abreu H.; Abulaiti Y.; Abusleme Hoffman A. C.; Acharya B. S.; Achkar B.; Adam L.; Adam Bourdarios C.; Adamczyk L.; Adamek L.; Addepalli S. V.; Adelman J.; Adiguzel A.; Adorni S.; Adye T.; Affolder A. A.; Afik Y.; Agaras M. N.; Agarwala J.; Aggarwal A.; Agheorghiesei C.; Aguilar-Saavedra J. A.; Ahmad A.; Ahmadov F.; Ahmed W. S.; Ai X.; Aielli G.; Aizenberg I.; Akbiyik M.; Akesson T. P. A.; Akimov A. V.; Al Khoury K.; Alberghi G. L.; Albert J.
A search for heavy Higgs bosons produced in association with a vector boson and decaying into a pair of vector bosons is performed in final states with two leptons (electrons or muons) of the same electric charge, missing transverse momentum and jets. A data sample of proton-proton collisions at a centre-of-mass energy of 13 TeV recorded with the ATLAS detector at the Large Hadron Collider between 2015 and 2018 is used. The data correspond to a total integrated luminosity of 139 fb(-1). The observed data are in agreement with Standard Model background expectations. The results are interpreted using higher-dimensional operators in an effective field theory. Upper limits on the production cross-section are calculated at 95% confidence level as a function of the heavy Higgs boson's mass and coupling strengths to vector bosons. Limits are set in the Higgs boson mass range from 300 to 1500 GeV, and depend on the assumed couplings. The highest excluded mass for a heavy Higgs boson with the coupling combinations explored is 900 GeV. Limits on coupling strengths are also provided.
Item
A search for new resonances in multiple final states with a high transverse momentum Z boson in ?s=13 TeV pp collisions with the ATLAS detector
(SPRINGER, 2023/06/07) Aad G.; Abbott B.; Abbott D. C.; Abeling K.; Abidi S. H.; Aboulhorma A.; Abramowicz H.; Abreu H.; Abulaiti Y.; Abusleme Hoffman A. C.; Acharya B. S.; Achkar B.; Adam Bourdarios C.; Adamczyk L.; Adamek L.; Addepalli S. V.; Adelman J.; Adiguzel A.; Adorni S.; Adye T.; Affolder A. A.; Afik Y.; Agaras M. N.; Agarwala J.; Aggarwal A.; Agheorghiesei C.; Aguilar-Saavedra J. A.; Ahmad A.; Ahmadov F.; Ahmed W. S.; Ahuja S.; Ai X.; Aielli G.; Aizenberg I.; Akbiyik M.; Akesson T. P. A.; Akimov A. V.; Al Khoury K.; Alberghi G. L.; Albert J.
A generic search for resonances is performed with events containing a Z boson with transverse momentum greater than 100 GeV, decaying into e(+)e(-) or mu(+)mu(-). The analysed data collected with the ATLAS detector in proton-proton collisions at a centre-of-mass energy of 13TeV at the Large Hadron Collider correspond to an integrated luminosity of 139 fb(-1). Two invariant mass distributions are examined for a localised excess relative to the expected Standard Model background in six independent event categories (and their inclusive sum) to increase the sensitivity. No significant excess is observed. Exclusion limits at 95% confidence level are derived for two cases: a model-independent interpretation of Gaussian-shaped resonances with the mass width between 3% and 10% of the resonance mass, and a specific heavy vector triplet model with the decay mode W' -> ZW -> llqq.
Item
Anomaly detection search for new resonances decaying into a Higgs boson and a generic new particle X in hadronic final states using ?s=13 TeV pp collisions with the ATLAS detector
(AMER PHYSICAL SOC, 2023/09/18) Aad G.; Abbott B.; Abbott D. C.; Abeling K.; Abidi S. H.; Aboulhorma A.; Abramowicz H.; Abreu H.; Abulaiti Y.; Abusleme Hoffman A. C.; Acharya B. S.; Achkar B.; Adam L.; Adam Bourdarios C.; Adamczyk L.; Adamek L.; Addepalli S. V.; Adelman J.; Adiguzel A.; Adorni S.; Adye T.; Affolder A. A.; Afik Y.; Agaras M. N.; Agarwala J.; Aggarwal A.; Agheorghiesei C.; Aguilar-Saavedra J. A.; Ahmad A.; Ahmadov F.; Ahmed W. S.; Ai X.; Aielli G.; Aizenberg I.; Akbiyik M.; Akesson T. P. A.; Akimov A. V.; Al Khoury K.; Alberghi G. L.; Albert J.
A search is presented for a heavy resonance Y decaying into a Standard Model Higgs boson H and a new particle X in a fully hadronic final state. The full Large Hadron Collider run 2 dataset of proton-proton collisions at root s =13 TeV collected by the ATLAS detector from 2015 to 2018 is used and corresponds to an integrated luminosity of 139 fb(-1). The search targets the high Y-mass region, where the H and X have a significant Lorentz boost in the laboratory frame. A novel application of anomaly detection is used to define a general signal region, where events are selected solely because of their incompatibility with a learned background-only model. It is constructed using a jet-level tagger for signal-model-independent selection of the boosted X particle, representing the first application of fully unsupervised machine learning to an ATLAS analysis. Two additional signal regions are implemented to target a benchmark X decay into two quarks, covering topologies where the X is reconstructed as either a single large-radius jet or two small-radius jets. The analysis selects Higgs boson decays into bb, and a dedicated neural-network-based tagger provides sensitivity to the boosted heavy-flavor topology. No significant excess of data over the expected background is observed, and the results are presented as upper limits on the production cross section sigma(pp -> Y -> XH -> qqbb) for signals with m(Y) between 1.5 and 6 TeV and m(X) between 65 and 3000 GeV.
Item
ATLAS flavour-tagging algorithms for the LHC Run 2 pp collision dataset
(SPRINGER, 2023/07/31) Aad G.; Abbott B.; Abeling K.; Abicht N. J.; Abidi S. H.; Aboulhorma A.; Abramowicz H.; Abreu H.; Abulaiti Y.; Abusleme Hoffman A. C.; Acharya B. S.; Adam Bourdarios C.; Adamczyk L.; Adamek L.; Addepalli S. V.; Addison M. J.; Adelman J.; Adiguzel A.; Adorni S.; Adye T.; Affolder A. A.; Afik Y.; Agaras M. N.; Agarwala J.; Aggarwal A.; Agheorghiesei C.; Ahmad A.; Ahmadov F.; Ahmed W. S.; Ahuja S.; Ai X.; Aielli G.; Ait Tamlihat M.; Aitbenchikh B.; Aizenberg I.; Akbiyik M.; Akesson T. P. A.; Akimov A. V.; Akiyama D.; Akolkar N. N.
The flavour-tagging algorithms developed by the AvTLAS Collaboration and used to analyse its dataset of root s = 13 TeV pp collisions from Run 2 of the Large Hadron Collider are presented. These new tagging algorithms are based on recurrent and deep neural networks, and their performance is evaluated in simulated collision events. These developments yield considerable improvements over previous jet-flavour identification strategies. At the 77% b-jet identification efficiency operating point, light-jet (charm-jet) rejection factors of 170 (5) are achieved in a sample of simulated Standard Model t (t) over bar events; similarly, at a c-jet identification efficiency of 30%, a light-jet (b-jet) rejection factor of 70 (9) is obtained.
Item
Calibration of the light-flavour jet mistagging efficiency of the b-tagging algorithms with Z plus jets events using 139 fb-1 of ATLAS proton-proton collision data at ?s=13 TeV
(SPRINGER, 2023/08/14) Aad G.; Abbott B.; Abbott D. C.; Abeling K.; Abidi S. H.; Aboulhorma A.; Abramowicz H.; Abreu H.; Abulaiti Y.; Abusleme Hoffman A. C.; Acharya B. S.; Achkar B.; Adam L.; Adam Bourdarios C.; Adamczyk L.; Adamek L.; Addepalli S. V.; Adelman J.; Adiguzel A.; Adorni S.; Adye T.; Affolder A. A.; Afik Y.; Agaras M. N.; Agarwala J.; Aggarwal A.; Agheorghiesei C.; Aguilar-Saavedra J. A.; Ahmad A.; Ahmadov F.; Ahmed W. S.; Ai X.; Aielli G.; Aizenberg I.; Akbiyik M.; Akesson T. P. A.; Akimov A. V.; Al Khoury K.; Alberghi G. L.; Albert J.
The identification of b-jets, referred to as b-tagging, is an important part of many physics analyses in the ATLAS experiment at the Large Hadron Collider and an accurate calibration of its performance is essential for high-quality physics results. This publication describes the calibration of the light-flavour jet mistagging efficiency in a data sample of proton-proton collision events at root s = 13 TeV corresponding to an integrated luminosity of 139 fb(-1). The calibration is performed in a sample of Z bosons produced in association with jets. Due to the low mistagging efficiency for light-flavour jets, a method which uses modified versions of the b-tagging algorithms referred to as flip taggers is used in this work. A fit to the jet-flavour-sensitive secondary-vertex mass is performed to extract a scale factor from data, to correct the light-flavour jet mistagging efficiency in Monte Carlo simulations, while simultaneously correcting the b-jet efficiency. With this procedure, uncertainties coming from the modeling of jets from heavy-flavour hadrons are considerably lower than in previous calibrations of the mistagging scale factors, where they were dominant. The scale factors obtained in this calibration are consistent with unity within uncertainties.
Item
Constraints on spin-0 dark matter mediators and invisible Higgs decays using ATLAS 13 TeV pp collision data with two top quarks and missing transverse momentum in the final state
(SPRINGER, 2023/06/13) Aad G.; Abbott B.; Abbott D. C.; Abeling K.; Abidi S. H.; Aboulhorma A.; Abramowicz H.; Abreu H.; Abulaiti Y.; Abusleme Hoffman A. C.; Acharya B. S.; Achkar B.; Adam L.; Adam Bourdarios C.; Adamczyk L.; Adamek L.; Addepalli S. V.; Adelman J.; Adiguzel A.; Adorni S.; Adye T.; Affolder A. A.; Afik Y.; Agaras M. N.; Agarwala J.; Aggarwal A.; Agheorghiesei C.; Aguilar-Saavedra J. A.; Ahmad A.; Ahmadov F.; Ahmed W. S.; Ai X.; Aielli G.; Aizenberg I.; Akbiyik M.; Akesson T. P. A.; Akimov A. V.; Al Khoury K.; Alberghi G. L.; Albert J.
This paper presents a statistical combination of searches targeting final states with two top quarks and invisible particles, characterised by the presence of zero, one or two leptons, at least one jet originating from a b-quark and missing transverse momentum. The analyses are searches for phenomena beyond the Standard Model consistent with the direct production of dark matter in pp collisions at the LHC, using 139 fb(-1) of data collected with the ATLAS detector at a centre-of-mass energy of 13 TeV. The results are interpreted in terms of simplified dark matter models with a spin-0 scalar or pseudoscalar mediator particle. In addition, the results are interpreted in terms of upper limits on the Higgs boson invisible branching ratio, where the Higgs boson is produced according to the StandardModel in associationwith a pair of top quarks. For scalar (pseudoscalar) dark matter models, with all couplings set to unity, the statistical combination extends the mass range excluded by the best of the individual channels by 50 (25) GeV, excluding mediator masses up to 370 GeV. In addition, the statistical combination improves the expected coupling exclusion reach by 14% (24%), assuming a scalar (pseudoscalar) mediator mass of 10 GeV. An upper limit on the Higgs boson invisible branching ratio of 0.38 (0.30(-0.09)(+0.13)) is observed (expected) at 95% confidence level.
Item
Constraints on the Higgs boson self-coupling from single- and double-Higgs production with the ATLAS detector using pp collisions at?s=13 TeV
(ELSEVIER, 2023/08/10) Aad G.; Abbott B.; Abbott D. C.; Abeling K.; Abidi S. H.; Aboulhorma A.; Abramowicz H.; Abreu H.; Abulaiti Y.; Abusleme Hoffman A. C.; Acharya B. S.; Achkar B.; Adam L.; Adam Bourdarios C.; Adamczyk L.; Adamek L.; Addepalli S. V.; Adelman J.; Adiguzel A.; Adorni S.; Adye T.; Affolder A. A.; Afik Y.; Agaras M. N.; Agarwala J.; Aggarwal A.; Agheorghiesei C.; Aguilar-Saavedra J. A.; Ahmad A.; Ahmadov F.; Ahmed W. S.; Ai X.; Aielli G.; Aizenberg I.; Akbiyik M.; Akesson T. P. A.; Akimov A. V.; Al Khoury K.; Alberghi G. L.; Albert J.
Constraints on the Higgs boson self-coupling are set by combining double-Higgs boson analyses in the bb over bar bb over bar , bb over bar & tau;+& tau;- and bb over bar & gamma; & gamma; decay channels with single-Higgs boson analyses targeting the & gamma;& gamma;, Z Z*, W W *, & tau;+& tau;- and bb over bar decay channels. The data used in these analyses were recorded by the ATLAS detector at the LHC in proton-proton collisions at & RADIC;s = 13 TeV and correspond to an integrated luminosity of 126-139 fb-1. The combination of the double-Higgs analyses sets an upper limit of & mu;HH < 2.4 at 95% confidence level on the double-Higgs production cross-section normalised to its Standard Model prediction. Combining the single-Higgs and double-Higgs analyses, with the assumption that new physics affects only the Higgs boson self-coupling (& lambda;HHH), values outside the interval -0.4 < & kappa;& lambda; = (& lambda;HHH/& lambda;SM H H H ) < 6.3 are excluded at 95% confidence level. The combined single-Higgs and double-Higgs analyses provide results with fewer assumptions, by adding in the fit more coupling modifiers introduced to account for the Higgs boson interactions with the other Standard Model particles. In this relaxed scenario, the constraint becomes -1.4 < & kappa;& lambda; < 6.1 at 95% CL. & COPY; 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons .org /licenses /by /4 .0/). Funded by SCOAP3.
Item
Cross-section measurements for the production of a Z boson in association with high-transverse-momentum jets in pp collisions at ?s=13 TeV with the ATLAS detector
(SPRINGER, 2023/06/14) Aad G.; Abbott B.; Abbott D. C.; Abeling K.; Abidi S. H.; Aboulhorma A.; Abramowicz H.; Abreu H.; Abulaiti Y.; Abusleme Hoffman A. C.; Acharya B. S.; Achkar B.; Adam L.; Adam Bourdarios C.; Adamczyk L.; Adamek L.; Addepalli S. V.; Adelman J.; Adiguzel A.; Adorni S.; Adye T.; Affolder A. A.; Afik Y.; Agaras M. N.; Agarwala J.; Aggarwal A.; Agheorghiesei C.; Aguilar-Saavedra J. A.; Ahmad A.; Ahmadov F.; Ahmed W. S.; Ai X.; Aielli G.; Aizenberg I.; Akbiyik M.; Akesson T. P. A.; Akimov A. V.; Al Khoury K.; Alberghi G. L.; Albert J.
Cross-section measurements for a Z boson produced in association with high-transverse-momentum jets ((pT) >= 100 GeV) and decaying into a charged-lepton pair (e(+) e(-), mu(+)mu(-)) are presented. The measurements are performed using proton-proton collisions at root s = 13TeV corresponding to an integrated luminosity of 139 fb(-1) collected by the ATLAS experiment at the LHC. Measurements of angular correlations between the Z boson and the closest jet are performed in events with at least one jet with (pT) >= 500 GeV. Event topologies of particular interest are the collinear emission of a Z boson in dijet events and a boosted Z boson recoiling against a jet. Fiducial cross sections are compared with state-of-the-art theoretical predictions. The data are found to agree with next-to-nextto-leading-order predictions by NNLOjet and with the next-to-leading-order multi-leg generators MadGraph5_aMC@NLO and Sherpa.
Item
Evidence for the charge asymmetry in pp ? t(t)over-bar production at ?s=13 TeV with the ATLAS detector
(SPRINGER, 2023/08/16) Aad G.; Abbott B.; Abbott D. C.; Abeling K.; Abidi S. H.; Aboulhorma A.; Abramowicz H.; Abreu H.; Abulaiti Y.; Abusleme Hoffman A. C.; Acharya B. S.; Achkar B.; Adam L.; Adam Bourdarios C.; Adamczyk L.; Adamek L.; Addepalli S. V.; Adelman J.; Adiguzel A.; Adorni S.; Adye T.; Affolder A. A.; Afik Y.; Agaras M. N.; Agarwala J.; Aggarwal A.; Agheorghiesei C.; Aguilar-Saavedra J. A.; Ahmad A.; Ahmadov F.; Ahmed W. S.; Ai X.; Aielli G.; Aizenberg I.; Akbiyik M.; Akesson T. P. A.; Akimov A. V.; Al Khoury K.; Alberghi G. L.; Albert J.
Inclusive and differential measurements of the top-antitop ( t (t) over bar) charge asymmetry A(C)(t (t) over bar) and the leptonic asymmetry A(C)(l (l) over bar) are presented in proton-proton collisions at root s = 13 TeV recorded by the ATLAS experiment at the CERN Large Hadron Collider. The measurement uses the complete Run 2 dataset, corresponding to an integrated luminosity of 139 fb(-1), combines data in the single-lepton and dilepton channels, and employs reconstruction techniques adapted to both the resolved and boosted topologies. A Bayesian unfolding procedure is performed to correct for detector resolution and acceptance effects. The combined inclusive t (t) over bar charge asymmetry is measured to be A(C)(t (t) over bar) = 0.0068 +/- 0.0015, which differs from zero by 4.7 standard deviations. Differential measurements are performed as a function of the invariant mass, transverse momentum and longitudinal boost of the t (t) over bar system. Both the inclusive and differential measurements are found to be compatible with the Standard Model predictions, at next-to-next-to-leading order in quantum chromodynamics perturbation theory with next-to-leading-order electroweak corrections. The measurements are interpreted in the framework of the Standard Model effective field theory, placing competitive bounds on several Wilson coefficients.
Item
Evidence of off-shell Higgs boson production from ZZ leptonic decay channels and constraints on its total width with the ATLAS detector
(ELSEVIER, 2023/11/10) Aad G.; Abbott B.; Abeling K.; Abidi S. H.; Aboulhorma A.; Abramowicz H.; Abreu H.; Abulaiti Y.; Abusleme Hoffman A. C.; Acharya B. S.; Bourdarios C. Adam; Adamczyk L.; Adamek L.; Addepalli S. V; Adelman J.; Adiguzel A.; Adorni S.; Adye T.; Affolder A. A.; Afik Y.; Agaras M. N.; Agarwala J.; Aggarwal A.; Agheorghiesei C.; Aguilar-Saavedra J. A.; Ahmad A.; Ahmadov F.; Ahmed W. S.; Ahuja S.; Ai X.; Aielli G.; Tamlihat M. Ait; Aitbenchikh B.; Aizenberg I; Akbiyik M.; Akesson T. P. A.; Akimov A. V; Akolkar N. N.; Al Khoury K.; Alberghi G. L.
This Letter reports on a search for off-shell production of the Higgs boson using 139 fb(-1) of pp collision data at root s = 13 TeV collected by the ATLAS detector at the Large Hadron Collider. The signature is a pair of Z bosons, with contributions from both the production and subsequent decay of a virtual Higgs boson and the interference of that process with other processes. The two observable final states are ZZ -> 4l and Z Z -> 2l2 nu with l = e or mu. In the ZZ -> 4l final state, a dense Neural Network is used to enhance analysis sensitivity with respect to matrix element-based discrimination. The background-only hypothesis is rejected with an observed (expected) significance of 3.3 (2.2) standard deviations, representing experimental evidence for off-shell Higgs boson production. Assuming that no new particles enter the production of the virtual Higgs boson, its total width can be deduced from the measurement of its off-shell production cross-section. The measured total width of the Higgs boson is 4.5(-2.5)(+3.3) MeV, and the observed (expected) upper limit on the total width is found to be 10.5 (10.9) MeV at 95% confidence level. (c) 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
Item
Exclusive dielectron production in ultraperipheral Pb plus Pb collisions at ?sNN=5.02 TeV with ATLAS
(SPRINGER, 2023/06/27) Aad G.; Abbott B.; Abbott D. C.; Abeling K.; Abidi S. H.; Aboulhorma A.; Abramowicz H.; Abreu H.; Abulaiti Y.; Abusleme Hoffman A. C.; Acharya B. S.; Achkar B.; Adam L.; Adam Bourdarios C.; Adamczyk L.; Adamek L.; Addepalli S. V.; Adelman J.; Adiguzel A.; Adorni S.; Adye T.; Affolder A. A.; Afik Y.; Agaras M. N.; Agarwala J.; Aggarwal A.; Agheorghiesei C.; Aguilar-Saavedra J. A.; Ahmad A.; Ahmadov F.; Ahmed W. S.; Ai X.; Aielli G.; Aizenberg I.; Akbiyik M.; Akesson T. P. A.; Akimov A. V.; Al Khoury K.; Alberghi G. L.; Albert J.
Exclusive production of dielectron pairs, gamma gamma -> e(+) e(-), is studied using L-int = 1.72 nb(-1) of data from ultraperipheral collisions of lead nuclei at root s(NN) = 5.02TeV recorded by the ATLAS detector at the LHC. The process of interest proceeds via photon-photon interactions in the strong electromagnetic fields of relativistic lead nuclei. Dielectron production is measured in the fiducial region defined by following requirements: electron transverse momentum p(T)(e) > 2.5 GeV, absolute electron pseudorapidity |eta(e)| < 2.5, dielectron invariant mass m(ee) > 5 GeV, and dielectron transverse momentum p(T)(ee) < 2 GeV. Differential cross-sections are measured as a function of mee, average peT, absolute dielectron rapidity |y(ee)|, and scattering angle in the dielectron rest frame, | cos theta* |, in the inclusive sample, and also with a requirement of no activity in the forward direction. The total integrated fiducial cross-section is measured to be 215 +/- 1(stat.) (+23)(-20)(syst.) +/- 4(lumi.) mu b. Within experimental uncertainties the measured integrated cross-section is in good agreement with the QED predictions from the Monte Carlo programs Starlight and SuperChic, confirming the broad features of the initial photon fluxes. The differential cross-sections show systematic differences from these predictions which are more pronounced at high |y(ee)| and | cos theta* | values.
Item
Fast b-tagging at the high-level trigger of the ATLAS experiment in LHC Run 3
(IOP Publishing Ltd, 01-11-2023) Aad G.; Abbott B.; Abeling K.; Abicht N. J.; Abidi S. H.; Aboulhorma A.; Abramowicz H.; Abreu H.; Abulaiti Y.; Abusleme Hoffman A. C.; Acharya B. S.; Adam Bourdarios C.; Adamczyk L.; Adamek L.; Addepalli S. V.; Addison M. J.; Adelman J.; Adiguzel A.; Adye T.; Affolder A. A.; Afik Y.; Agaras M. N.; Agarwala J.; Aggarwal A.; Agheorghiesei C.; Ahmad A.; Ahmadov F.; Ahmed W. S.; Ahuja S.; Ai X.; Aielli G.; Aikot A.; Ait Tamlihat M.; Aitbenchikh B.; Aizenberg I.; Akbiyik M.; Akesson T. P. A.; Akimov A. V.; Akiyama D.; Akolkar N. N.; Al Khoury K.; Alberghi G. L.; Albert J.; Albicocco P.; Albouy G. L.; Alderweireldt S.; Aleksa M.; Aleksandrov I. N.; Alexa C.; Alexopoulos T.; Alfonsi F.; Algren M.; Alhroob M.; Ali B.; Ali H. M. J.; Ali S.; Alibocus S. W.; Aliev M.; Alimonti G.; Alkakhi W.; Allaire C.; Allbrooke B. M. M.; Allen J. F.; Allendes Flores C. A.; Allport P. P.; Aloisio A.; Alonso F.; Alpigiani C.; Alvarez Estevez M.; Alvarez Fernandez A.; Alves Cardoso M.; Alviggi M. G.; Aly M.; Amaral Coutinho Y.; Ambler A.; Amelung C.; Amerl M.; Ames C. G.; Amidei D.; Amor Dos Santos S. P.; Amos K. R.; Ananiev V.; Anastopoulos C.; Andeen T.; Anders J. K.; Andrean S. Y.; Andreazza A.; Angelidakis S.; Angerami A.; Anisenkov A. V.; Annovi A.; Antel C.; Anthony M. T.; Antipov E.; Antonelli M.; Anulli F.; Aoki M.; Aoki T.; Aparisi Pozo J. A.; Aparo M. A.; Aperio Bella L.; Appelt C.; Apyan A.; Aranzabal N.; Arcangeletti C.; Arce A. T. H.; Arena E.; Arguin J-F.; Argyropoulos S.; Arling J. -H.; Arnaez O.; Arnold H.; Artoni G.; Asada H.; Asai K.; Asai S.; Asbah N. A.; Assahsah J.; Assamagan K.; Astalos R.; Atashi S.; Atkin R. J.; Atkinson M.; Atmani H.; Atmasiddha P. A.; Augsten K.; Auricchio S.; Auriol A. D.; Austrup V. A.; Avolio G.; Axiotis K.; Azuelos G.; Babal D.; Bachacou H.; Bachas K.; Bachiu A.; Backman F.; Badea A.; Bagnaia P.; Bahmani M.; Bailey A. J.; Bailey V. R.; Baines J. T.; Baines L.; Bakalis C.; Baker O. K.; Bakos E.; Bakshi Gupta D.; Balakrishnan V.; Balasubramanian R.; Baldin E. M.; Balek P.; Ballabene E.; Balli F.; Baltes L. M.; Balunas W. K.; Balz J.; Banas E.; Bandieramonte M.; Bandyopadhyay A.; Bansal S.; Barak L.; Barakat M.; Barberio E. L.; Barberis D.; Barbero M.; Barel M. Z.; Barends K. N.; Barillari T.; Barisits M-S.; Barklow T.; Baron P.; Baron Moreno D. A.; Baroncelli A.; Barone G.; Barr A. J.; Barr J. D.; Barranco Navarro L.; Barreiro F.; Barreiro Guimaraes da Costa J.; Barron U.; Barros Teixeira M. G.; Barsov S.; Bartels F.; Bartoldus R.; Barton A. E.; Bartos P.; Basan A.; Baselga M.; Bassalat A.; Basso M. J.; Basson C. R.; Bates R. L.; Batlamous S.; Batley J. R.; Batool B.; Battaglia M.; Battulga D.; Bauce M.; Bauer M.; Bauer P.; Bazzano Hurrell L. T.; Beacham J. B.; Beau T.; Beauchemin P. H.; Becherer F.; Bechtle P.; Beck H. P.; Becker K.; Beddall A. J.; Bednyakov V. A.; Bee C. P.; Beemster L. J.; Beermann T. A.; Begalli M.; Begel M.; Behera A.; Behr J. K.; Beirer J. F.; Beisiegel F.; Belfkir M.; Bella G.; Bellagamba L.; Bellerive A.; Bellos P.; Beloborodov K.; Belyaev N. L.; Benchekroun D.; Bendebba F.; Benhammou Y.; Benoit M.; Bensinger J. R.; Bentvelsen S.; Beresford L.; Beretta M.; Bergeaas Kuutmann E.; Berger N.; Bergmann B.; Beringer J.; Bernardi G.; Bernius C.; Bernlochner F. U.; Bernon F.; Berry T.; Berta P.; Berthold A.; Bertram I. A.; Bethke S.; Betti A.; Bevan A. J.; Bhamjee M.; Bhatta S.; Bhattacharya D. S.; Bhattarai P.; Bhopatkar V. S.; Bi R.; Bianchi R. M.; Bianco G.; Biebel O.; Bielski R.; Biglietti M.; Billoud T. R. V.; Bindi M.; Bingul A.; Bini C.; Biondini A.; Birch-sykes C. J.; Bird G. A.; Birman M.; Biros M.; Biryukov S.; Bisanz T.; Bisceglie E.; Biswal J. P.; Biswas D.; Bitadze A.; Bjorke K.; Bloch I.; Blocker C.; Blue A.; Blumenschein U.; Blumenthal J.; Bobbink G. J.; Bobrovnikov V. S.; Boehler M.; Boehm B.; Bogavac D.; Bogdanchikov A. G.; Bohm C.; Boisvert V.; Bokan P.; Bold T.; Bomben M.; Bona M.; Boonekamp M.; Booth C. D.; Borbely A. G.; Bordulev I. S.; Borecka-Bielska H. M.; Borgna L. S.; Borissov G.; Bortoletto D.; Boscherini D.; Bosman M.; Bossio Sola J. D.; Bouaouda K.; Bouchhar N.; Boudreau J.; Bouhova-Thacker E. V.; Boumediene D.; Bouquet R.; Boveia A.; Boyd J.; Boye D.; Boyko I. R.; Bracinik J.; Brahimi N.; Brandt G.; Brandt O.; Braren F.; Brau B.; Brau J. E.; Brener R.; Brenner L.; Brenner R.; Bressler S.; Britton D.; Britzger D.; Brock I.; Brooijmans G.; Brooks W. K.; Brost E.; Brown L. M.; Bruce L. E.; Bruckler T. L.; Bruckman de Renstrom P. A.; Brueers B.; Bruni A.; Bruni G.; Bruschi M.; Bruscino N.; Buanes T.; Buat Q.; Buchin D.; Buckley A. G.; Bulekov O.; Bullard B. A.; Burdin S.; Burgard C. D.; Burger A. M.; Burghgrave B.; Burlayenko O.; Burr J. T. P.; Burton C. D.; Burzynski J. C.; Busch E. L.; Buescher V.; Bussey P. J.; Butler J. M.; Buttar C. M.; Butterworth J. M.; Buttinger W.; Buxo Vazquez C. J.; Buzykaev A. R.; Cabrera Urban S.; Cadamuro L.; Caforio D.; Cai H.; Cai Y.; Cairo V. M. M.; Cakir O.; Calace N.; Calafiura P.; Calderini G.; Calfayan P.; Callea G.; Caloba L. P.; Calvet D.; Calvet S.; Calvet T. P.; Calvetti M.; Camacho Toro R.; Camarda S.; Camarero Munoz D.; Camarri P.; Camerlingo M. T.; Cameron D.; Camincher C.; Campanelli M.; Camplani A.; Canale V.; Canesse A.; Cantero J.; Cao Y.; Capocasa F.; Capua M.; Carbone A.; Cardarelli R.; Cardenas J. C. J.; Cardillo F.; Carli T.; Carlino G.; Carlotto J. I.; Carlson B. T.; Carlson E. M.; Carminati L.; Carnelli A.; Carnesale M.; Caron S.; Carquin E.; Carra S.; Carratta G.; Carrio Argos F.; Carter J. W. S.; Carter T. M.; Casado M. P.; Caspar M.; Castiglia E. G.; Castillo F. L.; Castillo Garcia L.; Castillo Gimenez V.; Castro N. F.; Catinaccio A.; Catmore J. R.; Cavaliere V.; Cavalli N.; Cavasinni V.; Cekmecelioglu Y. C.; Celebi E.; Celli F.; Centonze M. S.; Cepaitis V.; Cerny K.; Cerqueira A. S.; Cerri A.; Cerrito L.; Cerutti F.; Cervato B.; Cervelli A.; Cesarini G.; Cetin S. A.; Chadi Z.; Chakraborty D.; Chan J.; Chan W. Y.; Chapman J. D.; Chapon E.; Chargeishvili B.; Charlton D. G.; Charman T. P.; Chatterjee M.; Chauhan C.; Chekanov S.; Chekulaev S. V.; Chelkov G. A.; Chen A.; Chen B.; Chen B.; Chen H.; Chen H.; Chen J.; Chen J.; Chen M.; Chen S.; Chen S. J.; Chen X.; Chen X.; Chen Y.; Cheng C. L.; Cheng H. C.; Cheong S.; Cheplakov A.; Cheremushkina E.; Cherepanova E.; Cherkaoui El Moursli R.; Cheu E.; Cheung K.; Chevalier L.; Chiarella V.; Chiarelli G.; Chiedde N.; Chiodini G.; Chisholm A. S.; Chitan A.; Chitishvili M.; Chizhov M. V.; Choi K.; Chomont A. R.; Chou Y.; Chow E. Y. S.; Chowdhury T.; Chu K. L.; Chu M. C.; Chu X.; Chudoba J.; Chwastowski J. J.; Cieri D.; Ciesla K. M.; Cindro V.; Ciocio A.; Cirotto F.; Citron Z. H.; Citterio M.; Ciubotaru D. A.; Ciungu B. M.; Clark A.; Clark P. J.; Clavijo Columbie J. M.; Clawson S. E.; Clement C.; Clercx J.; Clissa L.; Coadou Y.; Cobal M.; Coccaro A.; Coelho Barrue R. F.; Coelho Lopes De Sa R.; Coelli S.; Cohen H.; Coimbra A. E. C.; Cole B.; Collot J.; Conde Muino P.; Connell M. P.; Connell S. H.; Connelly I. A.; Conroy E. I.; Conventi F.; Cooke H. G.; Cooper-Sarkar A. M.; Cordeiro Oudot Choi A.; Cormier F.; Corpe L. D.; Corradi M.; Corriveau F.; Cortes-Gonzalez A.; Costa M. J.; Costanza F.; Costanzo D.; Cote B. M.; Cowan G.; Cranmer K.; Cremonini D.; Crepe-Renaudin S.; Crescioli F.; Cristinziani M.; Cristoforetti M.; Croft V.; Crosby J. E.; Crosetti G.; Cueto A.; Cuhadar Donszelmann T.; Cui H.; Cui Z.; Cunningham W. R.; Curcio F.; Czodrowski P.; Czurylo M. M.; Da Cunha Sargedas De Sousa M. J.; Da Fonseca Pinto J. V.; Da Via C.; Dabrowski W.; Dado T.; Dahbi S.; Dai T.; Dal Santo D.; Dallapiccola C.; Dam M.; D'amen G.; D'Amico V.; Damp J.; Dandoy J. R.; Daneri M. F.; Danninger M.; Dao V.; Darbo G.; Darmora S.; Das S. J.; D'Auria S.; David C.; Davidek T.; Davis-Purcell B.; Dawson I.; Day-hall H. A.; De K.; De Asmundis R.; De Biase N.; De Castro S.; De Groot N.; de Jong P.; de la Torre H.; De Maria A.; De Salvo A.; De Sanctis U.; De Santo A.; De Vivie De Regie J. B.; Dedovich D. V.; Degens J.; Deiana A. M.; Del Corso F.; Del Peso J.; Del Rio F.; Deliot F.; Delitzsch C. M.; Della Pietra M.; Della Volpe D.; Dell'Acqua A.; Dell'Asta L.; Delmastro M.; Delsart P. A.; Demers S.; Demichev M.; Denisov S. P.; D'Eramo L.; Derendarz D.; Derue F.; Dervan P.; Desch K.; Deutsch C.; Di Bello F. A.; Di Ciaccio A.; Di Ciaccio L.; Di Domenico A.; Di Donato C.; Di Girolamo A.; Di Gregorio G.; Di Luca A.; Di Micco B.; Di Nardo R.; Diaconu C.; Diamantopoulou M.; Dias F. A.; Dias Do Vale T.; Diaz M. A.; Diaz Capriles F. G.; Didenko M.; Diehl E. B.; Diehl L.; Diez Cornell S.; Diez Pardos C.; Dimitriadi C.; Dimitrievska A.; Dingfelder J.; Dinu I-M.; Dittmeier S. J.; Dittus F.; Djama F.; Djobava T.; Djuvsland J. I.; Doglioni C.; Dohnalova A.; Dolejsi J.; Dolezal Z.; Dona K. M.; Donadelli M.; Dong B.; Donini J.; D'Onofrio A.; D'Onofrio M.; Dopke J.; Doria A.; Dos Santos Fernandes N.; Dougan P.; Dova M. T.; Doyle A. T.; Draguet M. A.; Dreyer E.; Drivas-koulouris I.; Drobac A. S.; Drozdova M.; Du D.; du Pree T. A.; Dubinin F.; Dubovsky M.; Duchovni E.; Duckeck G.; Ducu O. A.; Duda D.; Dudarev A.; Duden E. R.; D'uffizi M.; Duflot L.; Duehrssen M.; Duelsen C.; Dumitriu A. E.; Dunford M.; Dungs S.; Dunne K.; Duperrin A.; Duran Yildiz H.; Dueren M.; Durglishvili A.; Dwyer B. L.; Dyckes G. I.; Dyndal M.; Dysch S.; Dziedzic B. S.; Earnshaw Z. O.; Eberwein G. H.; Eckerova B.; Eggebrecht S.; Egidio Purcino De Souza E.; Ehrke L. F.; Eigen G.; Einsweiler K.; Ekelof T.; Ekman P. A.; El Farkh S.; El Ghazali Y.; El Jarrari H.; El Moussaouy A.; Ellajosyula V.; Ellert M.; Ellinghaus F.; Elliot A. A.; Ellis N.; Elmsheuser J.; Elsing M.; Emeliyanov D.; Enari Y.; Ene I.; Epari S.; Erdmann J.; Erland P. A.; Errenst M.; Escalier M.; Escobar C.; Etzion E.; Evans G.; Evans H.; Evans L. S.; Evans M. O.; Ezhilov A.; Ezzarqtouni S.; Fabbri F.; Fabbri L.; Facini G.; Fadeyev V.; Fakhrutdinov R. M.; Falciano S.; Falda Ulhoa Coelho L. F.; Falke P. J.; Faltova J.; Fan C.; Fan Y.; Fang Y.; Fanti M.; Faraj M.; Farazpay Z.; Farbin A.; Farilla A.; Farooque T.; Farrington S. M.; Fassi F.; Fassouliotis D.; Faucci Giannelli M.; Fawcett W. J.; Fayard L.; Federic P.; Federicova P.; Fedin O. L.; Fedotov G.; Feickert M.; Feligioni L.; Fellers D. E.; Feng C.; Feng M.; Feng Z.; Fenton M. J.; Fenyuk A. B.; Ferencz L.; Ferguson R. A. M.; Fernandez Luengo S. I.; Fernoux M. J. V.; Ferrando J.; Ferrari A.; Ferrari P.; Ferrari R.; Ferrere D.; Ferretti C.; Fiedler F.; Filipcic A.; Filmer E. K.; Filthaut F.; Fiolhais M. C. N.; Fiorini L.; Fisher W. C.; Fitschen T.; Fitzhugh P. M.; Fleck I.; Fleischmann P.; Flick T.; Flores M.; Flores Castillo L. R.; Flores Sanz De Acedo L.; Follega F. M.; Fomin N.; Foo J. H.; Forland B. C.; Formica A.; Forti A. C.; Fortin E.; Fortman A. W.; Foti M. G.; Fountas L.; Fournier D.; Fox H.; Francavilla P.; Francescato S.; Franchellucci S.; Franchini M.; Franchino S.; Francis D.; Franco L.; Franconi L.; Franklin M.; Frattari G.; Freegard A. C.; Freund W. S.; Frid Y. Y.; Friend J.; Fritzsche N.; Froch A.; Froidevaux D.; Frost J. A.; Fu Y.; Fujimoto M.; Fullana Torregrosa E.; Fung K. Y.; Furtado De Simas Filho E.; Furukawa M.; Fuster J.; Gabrielli A.; Gabrielli A.; Gadow P.; Gagliardi G.; Gagnon L. G.; Gallas E. J.; Gallop B. J.; Gan K. K.; Ganguly S.; Gao J.; Gao Y.; Garay Walls F. M.; Garcia B.; Garcia C.; Garcia Alonso A.; Garcia Caffaro A. G.; Garcia Navarro J. E.; Garcia-Sciveres M.; Gardner G. L.; Gardner R. W.; Garelli N.; Garg D.; Garg R. B.; Gargan J. M.; Garner C. A.; Gasiorowski S. J.; Gaspar P.; Gaudio G.; Gautam V.; Gauzzi P.; Gavrilenko I. L.; Gavrilyuk A.; Gay C.; Gaycken G.; Gazis E. N.; Geanta A. A.; Gee C. M.; Gemme C.; Genest M. H.; Gentile S.; Gentry A. D.; George S.; George W. F.; Geralis T.; Gessinger-Befurt P.; Geyik M. E.; Ghani M.; Ghneimat M.; Ghorbanian K.; Ghosal A.; Ghosh A.; Ghosh A.; Giacobbe B.; Giagu S.; Giani T.; Giannetti P.; Giannini A.; Gibson S. M.; Gignac M.; Gil D. T.; Gilbert A. K.; Gilbert B. J.; Gillberg D.; Gilles G.; Gillwald N. E. K.; Ginabat L.; Gingrich D. M.; Giordani M. P.; Giraud P. F.; Giugliarelli G.; Giugni D.; Giuli F.; Gkialas I.; Gladilin L. K.; Glasman C.; Gledhill G. R.; Glemza G.; Glisic M.; Gnesi I.; Go Y.; Goblirsch-Kolb M.; Gocke B.; Godin D.; Gokturk B.; Goldfarb S.; Golling T.; Gololo M. G. D.; Golubkov D.; Gombas J. P.; Gomes A.; Gomes Da Silva G.; Gomez Delegido A. J.; Goncalo R.; Gonella G.; Gonella L.; Gongadze A.; Gonnella F.; Gonski J. L.; Gonzalez Andana R. Y.; Gonzalez de la Hoz S.; Gonzalez Fernandez S.; Gonzalez Lopez R.; Gonzalez Renteria C.; Gonzalez Rodrigues M. V.; Gonzalez Suarez R.; Gonzalez-Sevilla S.; Gonzalvo Rodriguez G. R.; Goossens L.; Gorini B.; Gorini E.; Gorisek A.; Gosart T. C.; Goshaw A. T.; Gostkin M. I.; Goswami S.; Gottardo C. A.; Gotz S. A.; Gouighri M.; Goumarre V.; Goussiou A. G.; Govender N.; Grabowska-Bold I.; Graham K.; Gramstad E.; Grancagnolo S.; Grandi M.; Grant C. M.; Gravila P. M.; Gravili F. G.; Gray H. M.; Greco M.; Grefe C.; Gregor I. M.; Grenier P.; Grieco C.; Grillo A. A.; Grimm K.; Grinstein S.; Grivaz J. -F.; Gross E.; Grosse-Knetter J.; Grud C.; Grundy J. C.; Guan L.; Guan W.; Gubbels C.; Guerrero Rojas J. G. R.; Guerrieri G.; Guescini F.; Gugel R.; Guhit J. A. M.; Guida A.; Guillemin T.; Guilloton E.; Guindon S.; Guo F.; Guo J.; Guo L.; Guo Y.; Gupta R.; Gurbuz S.; Gurdasani S. S.; Gustavino G.; Guth M.; Gutierrez P.; Gutierrez Zagazeta L. F.; Gutschow C.; Gwenlan C.; Gwilliam C. B.; Haaland E. S.; Haas A.; Habedank M.; Haber C.; Hadavand H. K.; Hadef A.; Hadzic S.; Hahn J. J.; Haines E. H.; Haleem M.; Haley J.; Hall J. J.; Hallewell G. D.; Halser L.; Hamano K.; Hamer M.; Hamity G. N.; Hampshire E. J.; Han J.; Han K.; Han L.; Han L.; Han S.; Han Y. F.; Hanagaki K.; Hance M.; Hangal D. A.; Hanif H.; Hank M. D.; Hankache R.; Hansen J. B.; Hansen J. D.; Hansen P. H.; Hara K.; Harada D.; Harenberg T.; Harkusha S.; Harris M. L.; Harris Y. T.; Harrison J.; Harrison N. M.; Harrison P. F.; Hartman N. M.; Hartmann N. M.; Hasegawa Y.; Hasib A.; Haug S.; Hauser R.; Hawkes C. M.; Hawkings R. J.; Hayashi Y.; Hayashida S.; Hayden D.; Hayes C.; Hayes R. L.; Hays C. P.; Hays J. M.; Hayward H. S.; He F.; He M.; He Y.; He Y.; Heatley N. B.; Hedberg I.; Heggelund A. L.; Hehir N. D.; Heidegger C.; Heidegger K. K.; Heidorn W. D.; Heilman J.; Heim S.; Heim T.; Heinlein J. G.; Heinrich J. J.; Heinrich L.; Hejbal J.; Helary L.; Held A.; Hellesund S.; Helling C. M.; Hellman S.; Henderson R. C. W.; Henkelmann L.; Henriques Correia A. M.; Herde H.; Hernandez Jimenez Y.; Herrmann L. M.; Herrmann T.; Herten G.; Hertenberger R.; Hervas L.; Hesping M. E.; Hessey N. P.; Hibi H.; Hillier S. J.; Hinds J. R.; Hinterkeuser F.; Hirose M.; Hirose S.; Hirschbuehl D.; Hitchings T. G.; Hiti B.; Hobbs J.; Hobincu R.; Hod N.; Hodgkinson M. C.; Hodkinson B. H.; Hoecker A.; Hofer J.; Holm T.; Holzbock M.; Hommels L. B. A. H.; Honan B. P.; Hong J.; Hong T. M.; Hooberman B. H.; Hopkins W. H.; Horii Y.; Hou S.; Howard A. S.; Howarth J.; Hoya J.; Hrabovsky M.; Hrynevich A.; Hryn'ova T.; Hsu P. J.; Hsu S. -C.; Hu Q.; Hu Y. F.; Huang S.; Huang X.; Huang Y.; Huang Y.; Huang Z.; Hubacek Z.; Huebner M.; Huegging F.; Huffman T. B.; Hugli C. A.; Huhtinen M.; Huiberts S. K.; Hulsken R.; Huseynov N.; Huston J.; Huth J.; Hyneman R.; Iacobucci G.; Iakovidis G.; Ibragimov I.; Iconomidou-Fayard L.; Iengo P.; Iguchi R.; Iizawa T.; Ikegami Y.; Ilic N.; Imam H.; Ince Lezki M.; Ingebretsen Carlson T.; Introzzi G.; Iodice M.; Ippolito V.; Irwin R. K.; Ishino M.; Islam W.; Issever C.; Istin S.; Ito H.; Iturbe Ponce J. M.; Iuppa R.; Ivina A.; Izen J. M.; Izzo V.; Jacka P.; Jackson P.; Jacobs R. M.; Jaeger B. P.; Jagfeld C. S.; Jain G.; Jain P.; Jaekel G.; Jakobs K.; Jakoubek T.; Jamieson J.; Janas K. W.; Javurkova M.; Jeanneau F.; Jeanty L.; Jejelava J.; Jenni P.; Jessiman C. E.; Jezequel S.; Jia C.; Jia J.; Jia X.; Jia X.; Jia Z.; Jiang Y.; Jiggins S.; Jimenez Pena J.; Jin S.; Jinaru A.; Jinnouchi O.; Johansson P.; Johns K. A.; Johnson J. W.; Jones D. M.; Jones E.; Jones P.; Jones R. W. L.; Jones T. J.; Joos H. L.; Joshi R.; Jovicevic J.; Ju X.; Junggeburth J. J.; Junkermann T.; Juste Rozas A.; Juzek M. K.; Kabana S.; Kaczmarska A.; Kado M.; Kagan H.; Kagan M.; Kahn A.; Kahn A.; Kahra C.; Kaji T.; Kajomovitz E.; Kakati N.; Kalaitzidou I.; Kalderon C. W.; Kamenshchikov A.; Kang N. J.; Kar D.; Karava K.; Kareem M. J.; Karentzos E.; Karkanias I.; Karkout O.; Karpov S. N.; Karpova Z. M.; Kartvelishvili V.; Karyukhin A. N.; Kasimi E.; Katzy J.; Kaur S.; Kawade K.; Kawale M. P.; Kawamoto T.; Kay E. F.; Kaya F. I.; Kazakos S.; Kazanin V. F.; Ke Y.; Keaveney J. M.; Keeler R.; Kehris G. V.; Keller J. S.; Kelly A. S.; Kempster J. J.; Kennedy K. E.; Kennedy P. D.; Kepka O.; Kerridge B. P.; Kersten S.; Kersevan B. P.; Keshri S.; Keszeghova L.; Ketabchi Haghighat S.; Khandoga M.; Khanov A.; Kharlamov A. G.; Kharlamova T.; Khoda E. E.; Khoo T. J.; Khoriauli G.; Khubua J.; Khwaira Y. A. R.; Kilgallon A.; Kim D. W.; Kim Y. K.; Kimura N.; Kingston M. K.; Kirchhoff A.; Kirfel C.; Kirfel F.; Kirk J.; Kiryunin A. E.; Kitsaki C.; Kivernyk O.; Klassen M.; Klein C.; Klein L.; Klein M. H.; Klein M.; Klein S. B.; Klein U.; Klimek P.; Klimentov A.; Klioutchnikova T.; Kluit P.; Kluth S.; Kneringer E.; Knight T. M.; Knue A.; Kobayashi R.; Kobylianskii D.; Koch S. F.; Kocian M.; Kodys P.; Koeck D. M.; Koenig P. T.; Koffas T.; Kolb M.; Koletsou I.; Komarek T.; Koeneke K.; Kong A. X. Y.; Kono T.; Konstantinidis N.; Konya B.; Kopeliansky R.; Koperny S.; Korcyl K.; Kordas K.; Koren G.; Korn A.; Korn S.; Korolkov I.; Korotkova N.; Kortman B.; Kortner O.; Kortner S.; Kostecka W. H.; Kostyukhin V. V.; Kotsokechagia A.; Kotwal A.; Koulouris A.; Kourkoumeli-Charalampidi A.; Kourkoumelis C.; Kourlitis E.; Kovanda O.; Kowalewski R.; Kozanecki W.; Kozhin A. S.; Kramarenko V. A.; Kramberger G.; Kramer P.; Krasny M. W.; Krasznahorkay A.; Kraus J. W.; Kremer J. A.; Kresse T.; Kretzschmar J.; Kreul K.; Krieger P.; Krishnamurthy S.; Krivos M.; Krizka K.; Kroeninger K.; Kroha H.; Kroll J.; Kroll J.; Krowpman K. S.; Kruchonak U.; Krueger H.; Krumnack N.; Kruse M. C.; Krzysiak J. A.; Kuchinskaia O.; Kuday S.; Kuehn S.; Kuesters R.; Kuhl T.; Kukhtin V.; Kulchitsky Y.; Kuleshov S.; Kumar M.; Kumari N.; Kupco A.; Kupfer T.; Kupich A.; Kuprash O.; Kurashige H.; Kurchaninov L. L.; Kurdysh O.; Kurochkin Y. A.; Kurova A.; Kuze M.; Kvam A. K.; Kvita J.; Kwan T.; Kyriacou N. G.; Laatu L. A. O.; Lacasta C.; Lacava F.; Lacker H.; Lacour D.; Lad N. N.; Ladygin E.; Laforge B.; Lagouri T.; Lahbabi F. Z.; Lai S.; Lakomiec I. K.; Lalloue N.; Lambert J. E.; Lammers S.; Lampl W.; Lampoudis C.; Lancaster A. N.; Lancon E.; Landgraf U.; Landon M. P. J.; Lang V. S.; Langenberg R. J.; Langrekken O. K. B.; Lankford A. J.; Lanni F.; Lantzsch K.; Lanza A.; Lapertosa A.; Laporte J. F.; Lari T.; Lasagni Manghi F.; Lassnig M.; Latonova V.; Laudrain A.; Laurier A.; Lawlor S. D.; Lawrence Z.; Lazzaroni M.; Le B.; Le Boulicaut E. M.; Leban B.; Lebedev A.; Leblanc M.; Ledroit-Guillon F.; Lee A. C. A.; Lee S. C.; Lee S.; Lee T. F.; Leeuw L. L.; Lefebvre H. P.; Lefebvre M.; Leggett C.; Lehmann Miotto G.; Leigh M.; Leight W. A.; Leinonen W.; Leisos A.; Leite M. A. L.; Leitgeb C. E.; Leitner R.; Leney K. J. C.; Lenz T.; Leone S.; Leonidopoulos C.; Leopold A.; Leroy C.; Les R.; Lester C. G.; Levchenko M.; Leveque J.; Levin D.; Levinson L. J.; Lewicki M. P.; Lewis D. J.; Li A.; Li B.; Li C.; Li C-Q.; Li H.; Li H.; Li H.; Li H.; Li H.; Li K.; Li L.; Li M.; Li Q. Y.; Li S.; Li S.; Li T.; Li X.; Li Z.; Li Z.; Li Z.; Li Z.; Liang S.; Liang Z.; Liberatore M.; Liberti B.; Lie K.; Lieber Marin J.; Lien H.; Lin K.; Lindley R. E.; Lindon J. H.; Lipeles E.; Lipniacka A.; Lister A.; Little J. D.; Liu B.; Liu B. X.; Liu D.; Liu J. B.; Liu J. K. K.; Liu K.; Liu M.; Liu M. Y.; Liu P.; Liu Q.; Liu X.; Liu Y.; Liu Y. L.; Liu Y. W.; Llorente Merino J.; Lloyd S. L.; Lobodzinska E. M.; Loch P.; Loffredo S.; Lohse T.; Lohwasser K.; Loiacono E.; Lokajicek M.; Lomas J. D.; Long J. D.; Longarini I.; Longo L.; Longo R.; Lopez Paz I.; Lopez Solis A.; Lorenz J.; Lorenzo Martinez N.; Lory A. M.; Loeschcke Centeno G.; Loseva O.; Lou X.; Lou X.; Lounis A.; Love J.; Love P. A.; Lu G.; Lu M.; Lu S.; Lu Y. J.; Lubatti H. J.; Luci C.; Lucio Alves F. L.; Lucotte A.; Luehring F.; Luise I.; Lukianchuk O.; Lundberg O.; Lund-Jensen B.; Luongo N. A.; Lutz M. S.; Lynn D.; Lyons H.; Lysak R.; Lytken E.; Lyubushkin V.; Lyubushkina T.; Lyukova M. M.; Ma H.; Ma K.; Ma L. L.; Ma Y.; Mac Donell D. M.; Maccarrone G.; Macdonald J. C.; Machado De Abreu Farias P. C.; Madar R.; Mader W. F.; Madula T.; Maeda J.; Maeno T.; Maerker M.; Maguire H.; Maiboroda V.; Maio A.; Maj K.; Majersky O.; Majewski S.; Makovec N.; Maksimovic V.; Malaescu B.; Malecki Pa.; Maleev V. P.; Malek F.; Mali M.; Malito D.; Mallik U.; Maltezos S.; Malyukov S.; Mamuzic J.; Mancini G.; Manco G.; Mandalia J. P.; Mandic I.; Manhaes de Andrade Filho L.; Maniatis I. M.; Manjarres Ramos J.; Mankad D. C.; Mann A.; Mansoulie B.; Manzoni S.; Marantis A.; Marchiori G.; Marcisovsky M.; Marcon C.; Marinescu M.; Marjanovic M.; Marshall E. J.; Marshall Z.; Marti-Garcia S.; Martin T. A.; Martin V. J.; Martin Dit Latour B.; Martinelli L.; Martinez M.; Martinez Agullo P.; Martinez Outschoorn V. I.; Martinez Suarez P.; Martin-Haugh S.; Martoiu V. S.; Martyniuk A. C.; Marzin A.; Mascione D.; Masetti L.; Mashimo T.; Masik J.; Maslennikov A. L.; Massa L.; Massarotti P.; Mastrandrea P.; Mastroberardino A.; Masubuchi T.; Mathisen T.; Matousek J.; Matsuzawa N.; Maurer J.; Macek B.; Maximov D. A.; Mazini R.; Maznas I.; Mazza M.; Mazza S. M.; Mazzeo E.; Mc Ginn C.; Mc Gowan J. P.; Mc Kee S. P.; McDonald E. F.; McDougall A. E.; Mcfayden J. A.; McGovern R. P.; Mchedlidze G.; Mckenzie R. P.; Mclachlan T. C.; Mclaughlin D. J.; McLean K. D.; McMahon S. J.; McNamara P. C.; Mcpartland C. M.; McPherson R. A.; Mehlhase S.; Mehta A.; Melini D.; Mellado Garcia B. R.; Melo A. H.; Meloni F.; Mendes Jacques Da Costa A. M.; Meng H. Y.; Meng L.; Menke S.; Mentink M.; Meoni E.; Merlassino C.; Merola L.; Meroni C.; Merz G.; Meshkov O.; Metcalfe J.; Mete A. S.; Meyer C.; Meyer J-P.; Middleton R. P.; Mijovic L.; Mikenberg G.; Mikestikova M.; Mikuz M.; Mildner H.; Milic A.; Milke C. D.; Miller D. W.; Miller L. S.; Milov A.; Milstead D. A.; Min T.; Minaenko A. A.; Minashvili I. A.; Mince L.; Mincer A. I.; Mindur B.; Mineev M.; Mino Y.; Mir L. M.; Miralles Lopez M.; Mironova M.; Mishima A.; Missio M. C.; Mitra A.; Mitsou V. A.; Mitsumori Y.; Miu O.; Miyagawa P. S.; Mkrtchyan T.; Mlinarevic M.; Mlinarevic T.; Mlynarikova M.; Mobius S.; Moder P.; Mogg P.; Mohammed A. F.; Mohapatra S.; Mokgatitswane G.; Moleri L.; Mondal B.; Mondal S.; Moenig K.; Monnier E.; Monsonis Romero L.; Montejo Berlingen J.; Montella M.; Montereali F.; Monticelli F.; Monzani S.; Morange N.; Moreira De Carvalho A. L.; Moreno Llacer M.; Moreno Martinez C.; Morettini P.; Morgenstern S.; Morii M.; Morinaga M.; Morley A. K.; Morodei F.; Morvaj L.; Moschovakos P.; Moser B.; Mosidze M.; Moskalets T.; Moskvitina P.; Moss J.; Moyse E. J. W.; Mtintsilana O.; Muanza S.; Mueller J.; Muenstermann D.; Mueller R.; Mullier G. A.; Mullin A. J.; Mullin J. J.; Mungo D. P.; Munoz Perez D.; Munoz Sanchez F. J.; Murin M.; Murray W. J.; Murrone A.; Muse J. M.; Muskinja M.; Mwewa C.; Myagkov A. G.; Myers A. J.; Myers A. A.; Myers G.; Myska M.; Nachman B. P.; Nackenhorst O.; Nag A.; Nagai K.; Nagano K.; Nagle J. L.; Nagy E.; Nairz A. M.; Nakahama Y.; Nakamura K.; Nakkalil K.; Nanjo H.; Narayan R.; Narayanan E. A.; Naryshkin I.; Naseri M.; Nasri S.; Nass C.; Navarro G.; Navarro-Gonzalez J.; Nayak R.; Nayaz A.; Nechaeva P. Y.; Nechansky F.; Nedic L.; Neep T. J.; Negri A.; Negrini M.; Nellist C.; Nelson C.; Nelson K.; Nemecek S.; Nessi M.; Neubauer M. S.; Neuhaus F.; Neundorf J.; Newhouse R.; Newman P. R.; Ng C. W.; Ng Y. W. Y.; Ngair B.; Nguyen H. D. N.; Nickerson R. B.; Nicolaidou R.; Nielsen J.; Niemeyer M.; Niermann J.; Nikiforou N.; Nikolaenko V.; Nikolic-Audit I.; Nikolopoulos K.; Nilsson P.; Ninca I.; Nindhito H. R.; Ninio G.; Nisati A.; Nishu N.; Nisius R.; Nitschke J-E.; Nkadimeng E. K.; Nobe T.; Noel D. L.; Nommensen T.; Norfolk M. B.; Norisam R. R. B.; Norman B. J.; Novak J.; Novak T.; Novotny L.; Novotny R.; Nozka L.; Ntekas K.; Nunes De Moura Junior N. M. J.; Nurse E.; Ocariz J.; Ochi A.; Ochoa I.; Oerdek S.; Offermann J. T.; Ogrodnik A.; Oh A.; Ohm C. C.; Oide H.; Oishi R.; Ojeda M. L.; O'Keefe M. W.; Okumura Y.; Oleiro Seabra L. F.; Olivares Pino S. A.; Oliveira Damazio D.; Oliveira Goncalves D.; Oliver J. L.; Olszewski A.; Oencel O. O.; O'Neill A. P.; Onofre A.; Onyisi P. U. E.; Oreglia M. J.; Orellana G. E.; Orestano D.; Orlando N.; Orr R. S.; O'Shea V.; Osojnak L. M.; Ospanov R.; Otero Y Garzon G.; Otono H.; Ott P. S.; Ottino G. J.; Ouchrif M.; Ouellette J.; Ould-Saada F.; Owen M.; Owen R. E.; Oyulmaz K. Y.; Ozcan V. E.; Ozturk N.; Ozturk S.; Pacey H. A.; Pacheco Pages A.; Padilla Aranda C.; Padovano G.; Pagan Griso S.; Palacino G.; Palazzo A.; Palestini S.; Pan J.; Pan T.; Panchal D. K.; Pandini C. E.; Panduro Vazquez J. G.; Pandya H. D.; Pang H.; Pani P.; Panizzo G.; Paolozzi L.; Papadatos C.; Parajuli S.; Paramonov A.; Paraskevopoulos C.; Paredes Hernandez D.; Park T. H.; Parker M. A.; Parodi F.; Parrish E. W.; Parrish V. A.; Parsons J. A.; Parzefall U.; Pascual Dias B.; Pascual Dominguez L.; Pasqualucci E.; Passaggio S.; Pastore F.; Pasuwan P.; Patel P.; Patel U. M.; Pater J. R.; Pauly T.; Pearkes J.; Pedersen M.; Pedro R.; Peleganchuk S. V.; Penc O.; Pender E. A.; Peng H.; Penski K. E.; Penzin M.; Peralva B. S.; Pereira Peixoto A. P.; Pereira Sanchez L.; Perepelitsa D. V.; Perez Codina E.; Perganti M.; Perini L.; Pernegger H.; Perrin O.; Peters K.; Peters R. F. Y.; Petersen B. A.; Petersen T. C.; Petit E.; Petousis V.; Petridou C.; Petrukhin A.; Pettee M.; Pettersson N. E.; Petukhov A.; Petukhova K.; Pezoa R.; Pezzotti L.; Pezzullo G.; Pham T. M.; Pham T.; Phillips P. W.; Piacquadio G.; Pianori E.; Piazza F.; Piegaia R.; Pietreanu D.; Pilkington A. D.; Pinamonti M.; Pinfold J. L.; Pinheiro Pereira B. C.; Pinto Pinoargote A. E.; Pintucci L.; Piper K. M.; Pirttikoski A.; Pizzi D. A.; Pizzimento L.; Pizzini A.; Pleier M. -A.; Plesanovs V.; Pleskot V.; Plotnikova E.; Poddar G.; Poettgen R.; Poggioli L.; Pokharel I.; Polacek S.; Polesello G.; Poley A.; Polifka R.; Polini A.; Pollard C. S.; Pollock Z. B.; Polychronakos V.; Pompa Pacchi E.; Ponomarenko D.; Pontecorvo L.; Popa S.; Popeneciu G. A.; Poreba A.; Portillo Quintero D. M.; Pospisil S.; Postill M. A.; Postolache P.; Potamianos K.; Potepa P. A.; Potrap I. N.; Potter C. J.; Potti H.; Poulsen T.; Poveda J.; Pozo Astigarraga M. E.; Prades Ibanez A.; Pretel J.; Price D.; Primavera M.; Principe Martin M. A.; Privara R.; Procter T.; Proffitt M. L.; Proklova N.; Prokofiev K.; Proto G.; Protopopescu S.; Proudfoot J.; Przybycien M.; Przygoda W. W.; Puddefoot J. E.; Pudzha D.; Pyatiizbyantseva D.; Qian J.; Qichen D.; Qin Y.; Qiu T.; Quadt A.; Queitsch-Maitland M.; Quetant G.; Quinn R. P.; Rabanal Bolanos G.; Rafanoharana D.; Ragusa F.; Rainbolt J. L.; Raine J. A.; Rajagopalan S.; Ramakoti E.; Ran K.; Rapheeha N. P.; Rasheed H.; Raskina V.; Rassloff D. F.; Rave S.; Ravina B.; Ravinovich I.; Raymond M.; Read A. L.; Readioff N. P.; Rebuzzi D. M.; Redlinger G.; Reed A. S.; Reeves K.; Reidelsturz J. A.; Reikher D.; Rej A.; Rembser C.; Renardi A.; Renda M.; Rendel M. B.; Renner F.; Rennie A. G.; Rescia A. L.; Resconi S.; Ressegotti M.; Rettie S.; Reyes Rivera J. G.; Reynolds E.; Rezanova O. L.; Reznicek P.; Ribaric N.; Ricci E.; Richter R.; Richter S.; Richter-Was E.; Ridel M.; Ridouani S.; Rieck P.; Riedler P.; Riefel E. M.; Rijssenbeek M.; Rimoldi A.; Rimoldi M.; Rinaldi L.; Rinn T. T.; Rinnagel M. P.; Ripellino G.; Riu I.; Rivadeneira P.; Rivera Vergara J. C.; Rizatdinova F.; Rizvi E.; Roberts B. A.; Roberts B. R.; Robertson S. H.; Robinson D.; Robles Gajardo C. M.; Robles Manzano M.; Robson A.; Rocchi A.; Roda C.; Rodriguez Bosca S.; Rodriguez Garcia Y.; Rodriguez Rodriguez A.; Rodriguez Vera A. M.; Roe S.; Roemer J. T.; Roepe-Gier A. R.; Roggel J.; Rohne O.; Rojas R. A.; Roland C. P. A.; Roloff J.; Romaniouk A.; Romano E.; Romano M.; Romero Hernandez A. C.; Rompotis N.; Roos L.; Rosati S.; Rosser B. J.; Rossi E.; Rossi E.; Rossi L. P.; Rossini L.; Rosten R.; Rotaru M.; Rottler B.; Rougier C.; Rousseau D.; Rousso D.; Roy A.; Roy-Garand S.; Rozanov A.; Rozen Y.; Ruan X.; Rubio Jimenez A.; Ruby A. J.; Ruelas Rivera V. H.; Ruggeri T. A.; Ruggiero A.; Ruiz-Martinez A.; Rummler A.; Rurikova Z.; Rusakovich N. A.; Russell H. L.; Russo G.; Rutherfoord J. P.; Rutherford Colmenares S.; Rybacki K.; Rybar M.; Rye E. B.; Ryzhov A.; Sabater Iglesias J. A.; Sabatini P.; Sabetta L.; Sadrozinski H. F-W.; Safai Tehrani F.; Safarzadeh Samani B.; Safdari M.; Saha S.; Sahinsoy M.; Saimpert M.; Saito M.; Saito T.; Salamani D.; Salnikov A.; Salt J.; Salvador Salas A.; Salvatore D.; Salvatore F.; Salzburger A.; Sammel D.; Sampsonidis D.; Sampsonidou D.; Sanchez J.; Sanchez Pineda A.; Sanchez Sebastian V.; Sandaker H.; Sander C. O.; Sandesara J. A.; Sandhoff M.; Sandoval C.; Sankey D. P. C.; Sano T.; Sansoni A.; Santi L.; Santoni C.; Santos H.; Santpur S. N.; Santra A.; Saoucha K. A.; Saraiva J. G.; Sardain J.; Sasaki O.; Sato K.; Sauer C.; Sauerburger F.; Sauvan E.; Savard P.; Sawada R.; Sawyer C.; Sawyer L.; Sayago Galvan I.; Sbarra C.; Sbrizzi A.; Scanlon T.; Schaarschmidt J.; Schacht P.; Schaefer D.; Schaefer U.; Schaffer A. C.; Schaile D.; Schamberger R. D.; Scharf C.; Schefer M. M.; Schegelsky V. A.; Scheirich D.; Schenck F.; Schernau M.; Scheulen C.; Schiavi C.; Schioppa E. J.; Schioppa M.; Schlag B.; Schleicher K. E.; Schlenker S.; Schmeing J.; Schmidt M. A.; Schmieden K.; Schmitt C.; Schmitt S.; Schoeffel L.; Schoening A.; Scholer P. G.; Schopf E.; Schott M.; Schovancova J.; Schramm S.; Schroeder F.; Schroer T.; Schultz-Coulon H-C.; Schumacher M.; Schumm B. A.; Schune Ph.; Schuy A. J.; Schwartz H. R.; Schwartzman A.; Schwarz T. A.; Schwemling Ph.; Schwienhorst R.; Sciandra A.; Sciolla G.; Scuri F.; Sebastiani C. D.; Sedlaczek K.; Seema P.; Seidel S. C.; Seiden A.; Seidlitz B. D.; Seitz C.; Seixas J. M.; Sekhniaidze G.; Sekula S. J.; Selem L.; Semprini-Cesari N.; Sengupta D.; Senthilkumar V.; Serin L.; Serkin L.; Sessa M.; Severini H.; Sforza F.; Sfyrla A.; Shabalina E.; Shaheen R.; Shahinian J. D.; Shaked Renous D.; Shan L. Y.; Shapir(data truncated to fit)
The ATLAS experiment relies on real-time hadronic jet reconstruction and b-tagging to record fully hadronic events containing b-jets. These algorithms require track reconstruction, which is computationally expensive and could overwhelm the high-level-trigger farm, even at the reduced event rate that passes the ATLAS first stage hardware-based trigger. In LHC Run 3, ATLAS has mitigated these computational demands by introducing a fast neural-network-based b-tagger, which acts as a low-precision filter using input from hadronic jets and tracks. It runs after a hardware trigger and before the remaining high-level-trigger reconstruction. This design relies on the negligible cost of neural-network inference as compared to track reconstruction, and the cost reduction from limiting tracking to specific regions of the detector. In the case of Standard Model HH -> b (b) over barb (b) over bar, a key signature relying on b-jet triggers, the filter lowers the input rate to the remaining high-level trigger by a factor of five at the small cost of reducing the overall signal efficiency by roughly 2%.
Item
Inclusive and differential cross-sections for dilepton t(t)over-bar production measured in ?s=13 TeV pp collisions with the ATLAS detector
(SPRINGER, 2023/07/17) Aad G.; Abbott B.; Abeling K.; Abicht N. J.; Abidi S. H.; Aboulhorma A.; Abramowicz H.; Abreu H.; Abulaiti Y.; Abusleme Hoffman A. C.; Acharya B. S.; Adam Bourdarios C.; Adamczyk L.; Adamek L.; Addepalli S. V.; Addison M. J.; Adelman J.; Adiguzel A.; Adorni S.; Adye T.; Affolder A. A.; Afik Y.; Agaras M. N.; Agarwala J.; Aggarwal A.; Agheorghiesei C.; Ahmad A.; Ahmadov F.; Ahmed W. S.; Ahuja S.; Ai X.; Aielli G.; Ait Tamlihat M.; Aitbenchikh B.; Aizenberg I.; Akbiyik M.; Akesson T. P. A.; Akimov A. V.; Akiyama D.; Akolkar N. N.
Differential and double-differential distributions of kinematic variables of leptons from decays of top-quark pairs (t (t) over bar) are measured using the full LHC Run 2 data sample collected with the ATLAS detector. The data were collected at a pp collision energy of root s = 13TeV and correspond to an integrated luminosity of 140 fb(-1). The measurements use events containing an oppositely charged e mu pair and b-tagged jets. The results are compared with predictions from several Monte Carlo generators. While no prediction is found to be consistent with all distributions, a better agreement with measurements of the lepton p(T) distributions is obtained by reweighting the t (t) over bar sample so as to reproduce the top-quark p(T) distribution from an NNLO calculation. The inclusive top-quark pair production cross-section is measured as well, both in a fiducial region and in the full phase-space. The total inclusive cross-section is found to be sigma(t (t) over bar) = 829 +/- 1 (stat) +/- 13 (syst) +/- 8 (lumi) +/- 2 (beam) pb, where the uncertainties are due to statistics, systematic effects, the integrated luminosity and the beam energy. This is in excellent agreement with the theoretical expectation.
Item
Measurement of electroweak Z(v (v)over-bar)? jj production and limits on anomalous quartic gauge couplings in pp collisions at ?s=13 TeV with the ATLAS detector
(SPRINGER, 2023/06/14) Aad G.; Abbott B.; Abbott D. C.; Abeling K.; Abidi S. H.; Aboulhorma A.; Abramowicz H.; Abreu H.; Abulaiti Y.; Abusleme Hoffman A. C.; Acharya B. S.; Achkar B.; Adam L.; Adam Bourdarios C.; Adamczyk L.; Adamek L.; Addepalli S. V.; Adelman J.; Adiguzel A.; Adorni S.; Adye T.; Affolder A. A.; Afik Y.; Agaras M. N.; Agarwala J.; Aggarwal A.; Agheorghiesei C.; Aguilar-Saavedra J. A.; Ahmad A.; Ahmadov F.; Ahmed W. S.; Ai X.; Aielli G.; Aizenberg I.; Akbiyik M.; Akesson T. P. A.; Akimov A. V.; Al Khoury K.; Alberghi G. L.; Albert J.
The electroweak production of Z(v (v) over bar)gamma in association with two jets is studied in a regime with a photon of high transverse momentum above 150 GeV using proton-proton collisions at a centre-of-mass energy of 13TeV at the Large Hadron Collider. The analysis uses a data sample with an integrated luminosity of 139 fb(-1) collected by the ATLAS detector during the 2015-2018 LHC data-taking period. This process is an important probe of the electroweak symmetry breaking mechanism in the Standard Model and is sensitive to quartic gauge boson couplings via vector-boson scattering. The fiducial Z( v (v) over bar)gamma jj cross section for electroweak production is measured to be 0.77(-0.30)(+0.34) fb and is consistent with the Standard Model prediction. Evidence of electroweak Z( v (v) over bar)gamma jj production is found with an observed significance of 3.2 sigma for the background-only hypothesis, compared with an expected significance of 3.7 sigma. The combination of this result with the previously published ATLAS observation of electroweak Z(v (v) over bar)gamma jj production yields an observed (expected) signal significance of 6.3 sigma (6.6 sigma). Limits on anomalous quartic gauge boson couplings are obtained in the framework of effective field theory with dimension-8 operators.
Item
Measurement of exclusive pion pair production in proton-proton collisions at ?s=7 TeV with the ATLAS detector
(SPRINGER, 2023/07/17) Aad G.; Abbott B.; Abbott D. C.; Abeling K.; Abidi S. H.; Aboulhorma A.; Abramowicz H.; Abreu H.; Abulaiti Y.; Abusleme Hoffman A. C.; Acharya B. S.; Achkar B.; Adam L.; Adam Bourdarios C.; Adamczyk L.; Adamek L.; Addepalli S. V.; Adelman J.; Adiguzel A.; Adorni S.; Adye T.; Affolder A. A.; Afik Y.; Agaras M. N.; Agarwala J.; Aggarwal A.; Agheorghiesei C.; Aguilar-Saavedra J. A.; Ahmad A.; Ahmadov F.; Ahmed W. S.; Ai X.; Aielli G.; Aizenberg I.; Akbiyik M.; Akesson T. P. A.; Akimov A. V.; Al Khoury K.; Alberghi G. L.; Albert J.
The exclusive production of pion pairs in the process pp -> pp pi(+)pi(-) has been measured at root s = 7TeV with the ATLAS detector at the LHC, using 80 mu b(-1) of low-luminosity data. The pion pairs were detected in the ATLAS central detector while outgoing protons were measured in the forwardATLASALFAdetector system. This represents the first use of proton tagging to measure an exclusive hadronic final state at the LHC. Across-sectionmeasurement is performed in two kinematic regions defined by the proton momenta, the pion rapidities and transverse momenta, and the pion-pion invariant mass. Cross-section values of 4.8 +/- 1.0 (stat)(-0.2) (+0.3)(syst) mu b and 9 +/- 6 (stat)(-2)(+2) (syst) mu b are obtained in the two regions; they are compared with theoretical models and provide a demonstration of the feasibility of measurements of this type.
Item
Measurement of single top-quark production in the s-channel in proton-proton collisions at ?s=13 TeV with the ATLAS detector
(SPRINGER, 2023/06/27) Aad G.; Abbott B.; Abbott D. C.; Abeling K.; Abidi S. H.; Aboulhorma A.; Abramowicz H.; Abreu H.; Abulaiti Y.; Abusleme Hoffman A. C.; Acharya B. S.; Achkar B.; Adam L.; Adam Bourdarios C.; Adamczyk L.; Adamek L.; Addepalli S. V.; Adelman J.; Adiguzel A.; Adorni S.; Adye T.; Affolder A. A.; Afik Y.; Agaras M. N.; Agarwala J.; Aggarwal A.; Agheorghiesei C.; Aguilar-Saavedra J. A.; Ahmad A.; Ahmadov F.; Ahmed W. S.; Ai X.; Aielli G.; Aizenberg I.; Akbiyik M.; Akesson T. P. A.; Akimov A. V.; Al Khoury K.; Alberghi G. L.; Albert J.
A measurement of single top-quark production in the s-channel is performed in proton-proton collisions at a centre-of-mass energy of 13TeV with the ATLAS detector at the CERN Large Hadron Collider. The dataset corresponds to an integrated luminosity of 139 fb(-1). The analysis is performed on events with an electron or muon, missing transverse momentum and exactly two b-tagged jets in the final state. A discriminant based on matrix element calculations is used to separate single-top-quark s-channel events from the main background contributions, which are top-quark pair production and W-boson production in association with jets. The observed (expected) signal significance over the background-only hypothesis is 3.3 (3.9) standard deviations, and the measured cross-section is sigma = 8.2(-2.9)(+3.5) pb, consistent with the Standard Model prediction of sigma(SM) = 10.32(-0.36)(+0.40) pb.
Item
Measurement of the charge asymmetry in top-quark pair production in association with a photon with the ATLAS experiment
(ELSEVIER, 2023/08/10) Aad G.; Abbott B.; Abbott D. C.; Abeling K.; Abidi S. H.; Aboulhorma A.; Abramowicz H.; Abreu H.; Abulaiti Y.; Abusleme Hoffman A. C.; Acharya B. S.; Achkar B.; Adam L.; Adam Bourdarios C.; Adamczyk L.; Adamek L.; Addepalli S. V.; Adelman J.; Adiguzel A.; Adorni S.; Adye T.; Affolder A. A.; Afik Y.; Agaras M. N.; Agarwala J.; Aggarwal A.; Agheorghiesei C.; Aguilar-Saavedra J. A.; Ahmad A.; Ahmadov F.; Ahmed W. S.; Ai X.; Aielli G.; Aizenberg I.; Akbiyik M.; Akesson T. P. A.; Akimov A. V.; Al Khoury K.; Alberghi G. L.; Albert J.
A measurement of the charge asymmetry in top-quark pair (t (t) over bar) production in association with a photon is presented. The measurement is performed in the single-lepton t (t) over bar decay channel using proton-proton collision data collected with the ATLAS detector at the Large Hadron Collider at CERN at a centre-of-mass-energy of 13 TeV during the years 2015-2018, corresponding to an integrated luminosity of 139 fb(-1). The charge asymmetry is obtained from the distribution of the difference of the absolute rapidities of the top quark and antiquark using a profile likelihood unfolding approach. It is measured to be A(C) = -0.003 +/- 0.029 in agreement with the Standard Model expectation. (c) 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
Item
Measurement of the cross-sections of the electroweak and total production of a Z? pair in association with two jets in pp collisions at ?s=13 TeV with the ATLAS detector
(ELSEVIER, 2023/11/10) Aad G.; Abbott B.; Abeling K.; Abicht N. J.; Abidi S. H.; Aboulhorma A.; Abramowicz H.; Abreu H.; Abulaiti Y.; Abusleme Hoffman A. C.; Acharya B. S.; Adam Bourdarios C.; Adamczyk L.; Adamek L.; Addepalli S. V.; Addison M. J.; Adelman J.; Adiguzel A.; Adye T.; Affolder A. A.; Afik Y.; Agaras M. N.; Agarwala J.; Aggarwal A.; Agheorghiesei C.; Ahmad A.; Ahmadov F.; Ahmed W. S.; Ahuja S.; Ai X.; Aielli G.; Aikot A.; Tamlihat M. Ait; Aitbenchikh B.; Aizenberg I.; Akbiyik M.; Akesson T. P. A.; Akimov A. V.; Akiyama D.; Akolkar N. N.
This Letter presents the measurement of the fiducial and differential cross-sections of the electroweak production of a Z gamma pair in association with two jets. The analysis uses 140 fb(-1)of LHC proton-proton collision data taken at root s=13 TeV recorded by the ATLAS detector during the years 2015-2018. Events with a Zboson candidate decaying into either an e(+) e(-) or mu(+) mu(-) pair, a photon and two jets are selected. The electroweak component is extracted by requiring a large dijet invariant mass and by using the information about the centrality of the system and is measured with an observed and expected significance well above five standard deviations. The fiducial pp -> Z gamma jj cross-section for the electroweak production is measured to be 3.6 +/- 0.5fb. The total fiducial cross-section that also includes contributions where the jets arise from strong interactions is measured to be 16.8(-1.8)(+2.0) fb. The results are consistent with the Standard Model predictions. Differential cross-sections are also measured using the same events and are compared with parton-shower Monte Carlo simulations. Good agreement is observed between data and predictions. (c) 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
Item
Measurement of the Higgs boson mass in the H?ZZ* ? 4l decay channel using 139 fb-1 of ?s=13 TeV pp collisions recorded by the ATLAS detector at the LHC
(ELSEVIER, 2023/08/10) Aad G.; Abbott B.; Abbott D. C.; Abeling K.; Abidi S. H.; Aboulhorma A.; Abramowicz H.; Abreu H.; Abulaiti Y.; Abusleme Hoffman A. C.; Acharya B. S.; Achkar B.; Adam Bourdarios C.; Adamczyk L.; Adamek L.; Addepalli S. V.; Adelman J.; Adiguzel A.; Adorni S.; Adye T.; Affolder A. A.; Afik Y.; Agaras M. N.; Agarwala J.; Aggarwal A.; Agheorghiesei C.; Aguilar-Saavedra J. A.; Ahmad A.; Ahmadov F.; Ahmed W. S.; Ahuja S.; Ai X.; Aielli G.; Aizenberg I.; Akbiyik M.; Akesson T. P. A.; Akimov A. V.; Al Khoury K.; Alberghi G. L.; Albert J.
The mass of the Higgs boson is measured in the H -> Z Z* -> 4l decay channel. The analysis uses proton-proton collision data from the Large Hadron Collider at a centre-of-mass energy of 13 TeV recorded by the ATLAS detector between 2015 and 2018, corresponding to an integrated luminosity of 139 fb(-1). The measured value of the Higgs boson mass is 124.99 0.18(stat.) +/- 0.04(syst.) GeV. In final states with muons, this measurement benefits from an improved momentum-scale calibration relative to that adopted in previous publications. The measurement also employs an analytic model that takes into account the invariant-mass resolution of the four-lepton system on a per-event basis and the output of a deep neural network discriminating signal from background events. This measurement is combined with the corresponding measurement using 7 and 8 TeV pp collision data, resulting in a Higgs boson mass of 124.94 +/- 0.17(stat.) +/- 0.03(syst.) GeV. (c) 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons .org /licenses /by /4 .0/). Funded by SCOAP3.
Item
Measurement of the nuclear modification factor of b-jets in 5.02 TeV Pb+Pb collisions with the ATLAS detector
(SPRINGER, 2023/05/25) Aad G.; Abbott B.; Abbott D. C.; Abeling K.; Abidi S. H.; Aboulhorma A.; Abramowicz H.; Abreu H.; Abulaiti Y.; Abusleme Hoffman A. C.; Acharya B. S.; Achkar B.; Adam L.; Adam Bourdarios C.; Adamczyk L.; Adamek L.; Addepalli S. V.; Adelman J.; Adiguzel A.; Adorni S.; Adye T.; Affolder A. A.; Afik Y.; Agaras M. N.; Agarwala J.; Aggarwal A.; Agheorghiesei C.; Aguilar-Saavedra J. A.; Ahmad A.; Ahmadov F.; Ahmed W. S.; Ai X.; Aielli G.; Aizenberg I.; Akbiyik M.; Akesson T. P. A.; Akimov A. V.; Al Khoury K.; Alberghi G. L.; Albert J.
This paper presents a measurement of b-jet production in Pb+Pb and pp collisions at root s(NN) = 5.02 TeV with the ATLAS detector at the LHC. The measurement uses 260 pb(-1) of pp collisions collected in 2017 and 1.4 nb(-1) of Pb+Pb collisions collected in 2018. In both collision systems, jets are reconstructed via the anti-kt algorithm. The b-jets are identified from a sample of jets containing muons from the semileptonic decay of b-quarks using template fits of the muon momentum relative to the jet axis. In pp collisions, b-jets are reconstructed for radius parameters R=0.2 and R=0.4, and only R=0.2 jets are used in Pb+Pb collisions. For comparison, inclusive R=0.2 jets are also measured using 1.7 nb(-1) of Pb+Pb collisions collected in 2018 and the same pp collision data as the b-jet measurement. The nuclear modification factor, RAA, is calculated for both b-jets and inclusive jets with R=0.2 over the transverse momentum range of 80-290 GeV. The nuclear modification factor for b-jets decreases from peripheral to central collisions. The ratio of the b-jet RAA to inclusive jet RAA is also presented and suggests that the RAA for b-jets is larger than that for inclusive jets in central Pb+Pb collisions. The measurements are compared with theoretical calculations and suggest a role for mass and colour-charge effects in partonic energy loss in heavy-ion collisions.
  • «
  • 1 (current)
  • 2
  • 3
  • 4
  • »
Departamento de Atención de Asuntos Ley N°21.369
Comité de Seguridad de la Información
Coronavirus
Separador
ULS en Cifras
Convenios de Desempeño
Separador
Incentivo al Retiro
Trabaja con Nosotros
Separador
PACE ULS
TRANSPARENCIA ULS
  • Transparencia Activa
  • Solicitud Ley de Transparencia
Separador
IDENTIDAD VISUAL
  • Logos ULS
  • Relato Corporativo
  • Brochure Corporativo (mayo/2022)

  • Logo universidad de La Serena - Link a Inicio
  • link a contactos ULS
  • Logo Acreditación Institucional por 5 años