Browsing by Author "Gouin Nicolas"
A melting-pot for Pterodroma petrels on Rapa Nui: ecological divergence and reproductive isolation in a contact zone
(2023/07/27) Plaza Paula; Cristofari Robin; Gouin Nicolas; Soto-Gamboa Mauricio; Luna-Jorquera Guillermo
Speciation is thought to depend on general ecological segregation rather than on strict allopatry in species with planetary-scale foraging ranges, such as Pterodroma petrels. Separation in both breeding islands and foraging grounds are generally considered to be the conditions for prezygotic isolation. However, it is unclear how both can be maintained in a context of ongoing distributional range shifts due to global change, with range contractions and expansions caused by changing land use in breeding territories and oceanographic conditions impacting productivity areas. In this context, we expect that wherever the fragile balance of allopatric segregation breaks down, gene flow may be re-established across the borders of what is currently considered separated species. In these melting pot areas, fine-scale ecological differentiation is likely the only force opposing panmixia in otherwise highly similar organisms. In this study, we focus on six Polynesian Pterodroma species currently found on Motu Nui, a protected islet offshore of Rapa Nui (Easter Island), four of which have likely extended their breeding range to that island recently. To understand the fine-scale interaction between these closely-related species in their new contact zone, we used an integrative approach combining ecological and genetic methods, including morphometric, bioacoustics, stable isotope niche reconstruction, breeding site characterisation, phenology traits, and both nuclear and mitochondrial DNA markers. We found that significant amounts of gene flow occur across what is currently considered species boundaries, sometimes questioning the relevance of the accepted species classification. Interestingly, our results indicate that multivariate ecological distance between individuals in a group of closely related species (P. alba, P. atrata, P. heraldica, and P. neglecta) is a relevant predictor of gene flow intensity, while more distant species such as P. ultima and P. nigripennis seem to maintain reproductive isolation. Thus, the case of Pterodroma petrels supports the idea that incomplete allopatric speciation processes may be halted or even reversed on a secondary contact zone. Beyond their direct taxonomical relevance, our results underline the importance of considering fine ecological structures for biodiversity mapping and conservation policies.
Ecological uniqueness across multiple levels of biodiversity in a Chilean watershed
(2024/06/01) Borquez Jessica; Sampertegui Sandra; Wallberg Britt N.; Coral-Santacruz Diana; Ruiz Victor H.; Samollow Paul B.; Gouin Nicolas; Bertin Angeline
To effectively address biodiversity loss, it is essential to prioritize conservation efforts by identifying areas of high conservation value. Ecological uniqueness is a valuable metric for this purpose that decomposes beta diversity into local contributions to beta diversity (LCBD), thereby measuring the contribution of each site within a region to overall biodiversity variation. LCBD has been used extensively to evaluate ecological uniqueness from community composition data, but biodiversity is a multifaceted concept, and community-based ecological uniqueness may not capture the full range of ecological uniqueness occurring at other levels of biological organization. We investigated ecological uniqueness estimates derived from community and species population levels in a watershed of south-central Chile and analyzed their responses to water and habitat quality variables. Ecological uniqueness was estimated at the community level from fish and macroinvertebrate assemblages and at the population level using genetic and morphological data gathered for two invertebrates, the gastropod Chilina dombeiana and the water bug Aquarius chilensis. Our results revealed low spatial congruence between the levels of ecological uniqueness calculated for these different biodiversity components, with mismatches occurring among sites with high LCBD values. Water and habitat quality were major drivers of beta diversity in this watershed, accounting for 43.8% to 74.3% of the spatial variation in LCBDs, and their effects differed among the ecological uniqueness estimates. Overall, our results underscore the idiosyncratic nature of ecological uniqueness metrics, emphasizing the importance of using multiple components of biodiversity to guide conservation actions.
Effects of land cover and habitat condition on the bird community along a gradient of agricultural development within an arid watershed of Chile
(2023/10/15) Petit Mariangeles; Celis Cristian; Weideman Craig; Gouin Nicolas; Bertin Angeline
Agricultural activities are a major cause of change in avifauna, frequently resulting in diminished diversity and biotic homogenization, and ultimately compromising ecosystem functioning and resilience. Arid ecosystems, which provide habitat for numerous native and endemic bird species, are vulnerable to global change and valuable in predicting future ecosystem shifts in regions undergoing aridification as a result of climate change. However, the impacts of agriculture on bird communities in arid ecosystems are understudied. Here, we evaluate these impacts in the arid Limari watershed in north-central Chile, a region that has experienced extensive land use conversion to agriculture over the past 50 years. Specifically, we investigated current spatial patterns of avian beta diversity and the impact of landscape context on this diversity facet. Moreover, we evaluated how bird species respond to land cover and habitat conditions and the role of specific bird traits in this regard. To achieve this, we evaluated taxonomic and functional beta diversity across 26 sites distributed along a gradient of agricultural development, applied a beta diversity decomposition procedure, and carried out hierarchical joint species distribution modeling. Our study revealed high taxonomic but low functional beta diversity of the avifauna in the Limari watershed, potentially indicative of past functional homogenization. Contrary to our initial expectations, present agricultural practices did not decrease beta diversity. While human-related landscape elements and agricultural features mostly had neutral or positive effects on bird occurrence, they negatively affected endemic species and certain bird traits related to diet and habitat. Riparian vegetation cover and quality, unrelated to agricultural and urban development, emerged as key factors structuring the regional bird community, and influenced beta diversity. Our results underscore the profound influence of land use change on the avian community in this arid region and the vital role of riparian ecosystems in this regard. Balancing conservation objectives with agricultural development is key to ensuring both the persistence of several functional groups in the region as well as the ecosystem services they provide.
Effects of land cover and habitat condition on the bird community along a gradient of agricultural development within an arid watershed of Chile
(2023/10/15) Petit Mariangeles; Celis Cristian; Weideman Craig; Gouin Nicolas; Bertin Angeline
Agricultural activities are a major cause of change in avifauna, frequently resulting in diminished diversity and biotic homogenization, and ultimately compromising ecosystem functioning and resilience. Arid ecosystems, which provide habitat for numerous native and endemic bird species, are vulnerable to global change and valuable in predicting future ecosystem shifts in regions undergoing aridification as a result of climate change. However, the impacts of agriculture on bird communities in arid ecosystems are understudied. Here, we evaluate these impacts in the arid Limari watershed in north-central Chile, a region that has experienced extensive land use conversion to agriculture over the past 50 years. Specifically, we investigated current spatial patterns of avian beta diversity and the impact of landscape context on this diversity facet. Moreover, we evaluated how bird species respond to land cover and habitat conditions and the role of specific bird traits in this regard. To achieve this, we evaluated taxonomic and functional beta diversity across 26 sites distributed along a gradient of agricultural development, applied a beta diversity decomposition procedure, and carried out hierarchical joint species distribution modeling. Our study revealed high taxonomic but low functional beta diversity of the avifauna in the Limari watershed, potentially indicative of past functional homogenization. Contrary to our initial expectations, present agricultural practices did not decrease beta diversity. While human-related landscape elements and agricultural features mostly had neutral or positive effects on bird occurrence, they negatively affected endemic species and certain bird traits related to diet and habitat. Riparian vegetation cover and quality, unrelated to agricultural and urban development, emerged as key factors structuring the regional bird community, and influenced beta diversity. Our results underscore the profound influence of land use change on the avian community in this arid region and the vital role of riparian ecosystems in this regard. Balancing conservation objectives with agricultural development is key to ensuring both the persistence of several functional groups in the region as well as the ecosystem services they provide.