Identification of Galaxy-Galaxy Strong Lens Candidates in the DECam Local Volume Exploration Survey Using Machine Learning

dc.contributor.authorZaborowski, E. A., Drlica-Wagner, A., Ashmead, F., Wu, J. F., Morgan, R., Bom, C. R., Shajib, A. J., Birrer, S., Cerny, W., Buckley-Geer, E. J., Mutlu-Pakdil, B., Ferguson, P. S., Glazebrook, K., Lozano, S. J. Gonzalez, Gordon, Y., Martinez, M., Manwadkar, V., O'Donnell, J., Poh, J., Riley, A., Sakowska, J. D., Santana-Silva, L., Santiago, B. X., Sluse, D., Tan, C. Y., Tollerud, E. J., Verma, A., Carballo-Bello, J. A., Choi, Y., James, D. J., Kuropatkin, N., Martinez-Vazquez, C. E., Nidever, D. L., Castellon, J. L. Nilo, Noel, N. E. D., Olsen, K. A. G., Pace, A. B., Mau, S., Yanny, B., Zenteno, A., Abbott, T. M. C., Aguena, M., Alves, O., Andrade-Oliveira, F., Bocquet, S., Brooks, D., Burke, D. L., Carnero Rosell, A., Carrasco Kind, M., Carretero, J., Castander, F. J., Conselice, C. J., Costanzi, M., Pereira, M. E. S., De Vicente, J., Desai, S., Dietrich, J. P., Doel, P., Everett, S., Ferrero, I., Flaugher, B., Friedel, D., Frieman, J., Garcia-Bellido, J., Gruen, D., Gruendl, R. A., Gutierrez, G., Hinton, S. R., Hollowood, D. L., Honscheid, K., Kuehn, K., Lin, H., Marshall, J. L., Melchior, P., Mena-Fernandez, J., Menanteau, F., Miquel, R., Palmese, A., Paz-Chinchon, F., Pieres, A., Malagon, A. A. Plazas, Prat, J., Rodriguez-Monroy, M., Romer, A. K., Sanchez, E., Scarpine, V., Sevilla-Noarbe, I, Smith, M., Suchyta, E., To, C., Weaverdyck, N.
dc.date.accessioned2024-11-27T21:50:38Z
dc.date.available2024-11-27T21:50:38Z
dc.date.issued2023/09/01
dc.description.abstractWe perform a search for galaxy-galaxy strong lens systems using a convolutional neural network (CNN) applied to imaging data from the first public data release of the DECam Local Volume Exploration Survey, which contains similar to 520 million astronomical sources covering similar to 4000 deg2 of the southern sky to a 5 sigma point-source depth of g = 24.3, r = 23.9, i = 23.3, and z = 22.8 mag. Following the methodology of similar searches using Dark Energy Camera data, we apply color and magnitude cuts to select a catalog of similar to 11 million extended astronomical sources. After scoring with our CNN, the highest-scoring 50,000 images were visually inspected and assigned a score on a scale from 0 (not a lens) to 3 (very probable lens). We present a list of 581 strong lens candidates, 562 of which are previously unreported. We categorize our candidates using their human-assigned scores, resulting in 55 Grade A candidates, 149 Grade B candidates, and 377 Grade C candidates. We additionally highlight eight potential quadruply lensed quasars from this sample. Due to the location of our search footprint in the northern Galactic cap (b > 10 deg) and southern celestial hemisphere (decl. < 0 deg), our candidate list has little overlap with other existing ground-based searches. Where our search footprint does overlap with other searches, we find a significant number of high-quality candidates that were previously unidentified, indicating a degree of orthogonality in our methodology. We report properties of our candidates including apparent magnitude and Einstein radius estimated from the image separation.
dc.identifier.doihttp://dx.doi.org/10.3847/1538-4357/ace4ba
dc.identifier.issn0004-637X
dc.identifier.urihttps://publicacionesabiertas.userena.cl/handle/123456789/146
dc.languageEnglish
dc.publisherIOP Publishing Ltd
dc.subjectSTRONG GRAVITATIONAL LENSES, HSC IMAGING SUGOHI, CONVOLUTIONAL NEURAL-NETWORKS, SURVEY SCIENCE VERIFICATION, QUADRUPLY IMAGED QUASAR, KILO-DEGREE SURVEY, HUBBLE CONSTANT, DARK-MATTER, TIME DELAYS, ACS SURVEY
dc.titleIdentification of Galaxy-Galaxy Strong Lens Candidates in the DECam Local Volume Exploration Survey Using Machine Learning
dc.typeArticle

Files

Original bundle
Name:
Zaborowski_2023_ApJ_954_68.pdf
Size:
6.23 MB
Format:
Adobe Portable Document Format

Collections