Ciencias Físicas
Permanent URI for this community
Browse
Browsing Ciencias Físicas by Title
A search for heavy Higgs bosons decaying into vector bosons in same-sign two-lepton final states in pp collisions at ?s=13 TeV with the ATLAS detector
(SPRINGER, 2023/07/26) Aad G.; Abbott B.; Abbott D. C.; Abeling K.; Abidi S. H.; Aboulhorma A.; Abramowicz H.; Abreu H.; Abulaiti Y.; Abusleme Hoffman A. C.; Acharya B. S.; Achkar B.; Adam L.; Adam Bourdarios C.; Adamczyk L.; Adamek L.; Addepalli S. V.; Adelman J.; Adiguzel A.; Adorni S.; Adye T.; Affolder A. A.; Afik Y.; Agaras M. N.; Agarwala J.; Aggarwal A.; Agheorghiesei C.; Aguilar-Saavedra J. A.; Ahmad A.; Ahmadov F.; Ahmed W. S.; Ai X.; Aielli G.; Aizenberg I.; Akbiyik M.; Akesson T. P. A.; Akimov A. V.; Al Khoury K.; Alberghi G. L.; Albert J.
A search for heavy Higgs bosons produced in association with a vector boson and decaying into a pair of vector bosons is performed in final states with two leptons (electrons or muons) of the same electric charge, missing transverse momentum and jets. A data sample of proton-proton collisions at a centre-of-mass energy of 13 TeV recorded with the ATLAS detector at the Large Hadron Collider between 2015 and 2018 is used. The data correspond to a total integrated luminosity of 139 fb(-1). The observed data are in agreement with Standard Model background expectations. The results are interpreted using higher-dimensional operators in an effective field theory. Upper limits on the production cross-section are calculated at 95% confidence level as a function of the heavy Higgs boson's mass and coupling strengths to vector bosons. Limits are set in the Higgs boson mass range from 300 to 1500 GeV, and depend on the assumed couplings. The highest excluded mass for a heavy Higgs boson with the coupling combinations explored is 900 GeV. Limits on coupling strengths are also provided.
A search for new resonances in multiple final states with a high transverse momentum Z boson in ?s=13 TeV pp collisions with the ATLAS detector
(SPRINGER, 2023/06/07) Aad G.; Abbott B.; Abbott D. C.; Abeling K.; Abidi S. H.; Aboulhorma A.; Abramowicz H.; Abreu H.; Abulaiti Y.; Abusleme Hoffman A. C.; Acharya B. S.; Achkar B.; Adam Bourdarios C.; Adamczyk L.; Adamek L.; Addepalli S. V.; Adelman J.; Adiguzel A.; Adorni S.; Adye T.; Affolder A. A.; Afik Y.; Agaras M. N.; Agarwala J.; Aggarwal A.; Agheorghiesei C.; Aguilar-Saavedra J. A.; Ahmad A.; Ahmadov F.; Ahmed W. S.; Ahuja S.; Ai X.; Aielli G.; Aizenberg I.; Akbiyik M.; Akesson T. P. A.; Akimov A. V.; Al Khoury K.; Alberghi G. L.; Albert J.
A generic search for resonances is performed with events containing a Z boson with transverse momentum greater than 100 GeV, decaying into e(+)e(-) or mu(+)mu(-). The analysed data collected with the ATLAS detector in proton-proton collisions at a centre-of-mass energy of 13TeV at the Large Hadron Collider correspond to an integrated luminosity of 139 fb(-1). Two invariant mass distributions are examined for a localised excess relative to the expected Standard Model background in six independent event categories (and their inclusive sum) to increase the sensitivity. No significant excess is observed. Exclusion limits at 95% confidence level are derived for two cases: a model-independent interpretation of Gaussian-shaped resonances with the mass width between 3% and 10% of the resonance mass, and a specific heavy vector triplet model with the decay mode W' -> ZW -> llqq.
Anomaly detection search for new resonances decaying into a Higgs boson and a generic new particle X in hadronic final states using ?s=13 TeV pp collisions with the ATLAS detector
(AMER PHYSICAL SOC, 2023/09/18) Aad G.; Abbott B.; Abbott D. C.; Abeling K.; Abidi S. H.; Aboulhorma A.; Abramowicz H.; Abreu H.; Abulaiti Y.; Abusleme Hoffman A. C.; Acharya B. S.; Achkar B.; Adam L.; Adam Bourdarios C.; Adamczyk L.; Adamek L.; Addepalli S. V.; Adelman J.; Adiguzel A.; Adorni S.; Adye T.; Affolder A. A.; Afik Y.; Agaras M. N.; Agarwala J.; Aggarwal A.; Agheorghiesei C.; Aguilar-Saavedra J. A.; Ahmad A.; Ahmadov F.; Ahmed W. S.; Ai X.; Aielli G.; Aizenberg I.; Akbiyik M.; Akesson T. P. A.; Akimov A. V.; Al Khoury K.; Alberghi G. L.; Albert J.
A search is presented for a heavy resonance Y decaying into a Standard Model Higgs boson H and a new particle X in a fully hadronic final state. The full Large Hadron Collider run 2 dataset of proton-proton collisions at root s =13 TeV collected by the ATLAS detector from 2015 to 2018 is used and corresponds to an integrated luminosity of 139 fb(-1). The search targets the high Y-mass region, where the H and X have a significant Lorentz boost in the laboratory frame. A novel application of anomaly detection is used to define a general signal region, where events are selected solely because of their incompatibility with a learned background-only model. It is constructed using a jet-level tagger for signal-model-independent selection of the boosted X particle, representing the first application of fully unsupervised machine learning to an ATLAS analysis. Two additional signal regions are implemented to target a benchmark X decay into two quarks, covering topologies where the X is reconstructed as either a single large-radius jet or two small-radius jets. The analysis selects Higgs boson decays into bb, and a dedicated neural-network-based tagger provides sensitivity to the boosted heavy-flavor topology. No significant excess of data over the expected background is observed, and the results are presented as upper limits on the production cross section sigma(pp -> Y -> XH -> qqbb) for signals with m(Y) between 1.5 and 6 TeV and m(X) between 65 and 3000 GeV.
Antropogenic seismicity and the breakdown of the self-similarity described by nonextensive models
(2023/05/01) Vega-Jorquera Pedro; de la Barra Erick; da Silva Sergio Luiz E. F.
A novel model is presented which considers multimodal and multisources approaches and the recent models proposed in the Tsallis formalism that consider memory in the seismic processes. It is shown that the multimodal Sotolongo Costa distribution fits better than current models for antropogenic seismic real data. The value of the entropic parameter q in many cases varies significantly for the different modes in the multimodal Sotolongo Costa distribution. Thus, changes are shown for the correlation structure in the low energy tremors and the high energy ones. The seismic hazard are compared using unimodal and multimodal models. We show that the first models in many cases underestimate the occurrence probability of damage quakes compared to the multimodal models, which can lead to misinterpretations on the evolution of mining-related seismicity.& COPY
ATLAS flavour-tagging algorithms for the LHC Run 2 pp collision dataset
(SPRINGER, 2023/07/31) Aad G.; Abbott B.; Abeling K.; Abicht N. J.; Abidi S. H.; Aboulhorma A.; Abramowicz H.; Abreu H.; Abulaiti Y.; Abusleme Hoffman A. C.; Acharya B. S.; Adam Bourdarios C.; Adamczyk L.; Adamek L.; Addepalli S. V.; Addison M. J.; Adelman J.; Adiguzel A.; Adorni S.; Adye T.; Affolder A. A.; Afik Y.; Agaras M. N.; Agarwala J.; Aggarwal A.; Agheorghiesei C.; Ahmad A.; Ahmadov F.; Ahmed W. S.; Ahuja S.; Ai X.; Aielli G.; Ait Tamlihat M.; Aitbenchikh B.; Aizenberg I.; Akbiyik M.; Akesson T. P. A.; Akimov A. V.; Akiyama D.; Akolkar N. N.
The flavour-tagging algorithms developed by the AvTLAS Collaboration and used to analyse its dataset of root s = 13 TeV pp collisions from Run 2 of the Large Hadron Collider are presented. These new tagging algorithms are based on recurrent and deep neural networks, and their performance is evaluated in simulated collision events. These developments yield considerable improvements over previous jet-flavour identification strategies. At the 77% b-jet identification efficiency operating point, light-jet (charm-jet) rejection factors of 170 (5) are achieved in a sample of simulated Standard Model t (t) over bar events; similarly, at a c-jet identification efficiency of 30%, a light-jet (b-jet) rejection factor of 70 (9) is obtained.
Calibration of the light-flavour jet mistagging efficiency of the b-tagging algorithms with Z plus jets events using 139 fb-1 of ATLAS proton-proton collision data at ?s=13 TeV
(SPRINGER, 2023/08/14) Aad G.; Abbott B.; Abbott D. C.; Abeling K.; Abidi S. H.; Aboulhorma A.; Abramowicz H.; Abreu H.; Abulaiti Y.; Abusleme Hoffman A. C.; Acharya B. S.; Achkar B.; Adam L.; Adam Bourdarios C.; Adamczyk L.; Adamek L.; Addepalli S. V.; Adelman J.; Adiguzel A.; Adorni S.; Adye T.; Affolder A. A.; Afik Y.; Agaras M. N.; Agarwala J.; Aggarwal A.; Agheorghiesei C.; Aguilar-Saavedra J. A.; Ahmad A.; Ahmadov F.; Ahmed W. S.; Ai X.; Aielli G.; Aizenberg I.; Akbiyik M.; Akesson T. P. A.; Akimov A. V.; Al Khoury K.; Alberghi G. L.; Albert J.
The identification of b-jets, referred to as b-tagging, is an important part of many physics analyses in the ATLAS experiment at the Large Hadron Collider and an accurate calibration of its performance is essential for high-quality physics results. This publication describes the calibration of the light-flavour jet mistagging efficiency in a data sample of proton-proton collision events at root s = 13 TeV corresponding to an integrated luminosity of 139 fb(-1). The calibration is performed in a sample of Z bosons produced in association with jets. Due to the low mistagging efficiency for light-flavour jets, a method which uses modified versions of the b-tagging algorithms referred to as flip taggers is used in this work. A fit to the jet-flavour-sensitive secondary-vertex mass is performed to extract a scale factor from data, to correct the light-flavour jet mistagging efficiency in Monte Carlo simulations, while simultaneously correcting the b-jet efficiency. With this procedure, uncertainties coming from the modeling of jets from heavy-flavour hadrons are considerably lower than in previous calibrations of the mistagging scale factors, where they were dominant. The scale factors obtained in this calibration are consistent with unity within uncertainties.
Combined Measurement of the Higgs Boson Mass from the H ? ?? and H ? ZZ* ? 4l Decay Channels with the ATLAS Detector Using ?s=7, 8, and 13 TeV pp Collision Data
(2023/12/21) Aad G.; Abbott B.; Abeling K.; Abicht N. J.; Abidi S. H.; Aboulhorma A.; Abramowicz H.; Abreu H.; Abulaiti Y.; Acharya B. S.; Bourdarios C. Adam; Adamczyk L.; Addepalli S. V.; Addison M. J.; Adelman J.; Adiguzel A.; Adye T.; Affolder A. A.; Afik Y.; Agaras M. N.; Agarwala J.; Aggarwal A.; Agheorghiesei C.; Ahmad A.; Ahmadov F.; Ahmed W. S.; Ahuja S.; Ai X.; Aielli G.; Aikot A.; Tamlihat M. Ait; Aitbenchikh B.; Aizenberg I.; Akbiyik M.; Akesson T. P. A.; Akimov A. V.; Akiyama D.; Akolkar N. N.; Al Khoury K.; Alberghi G. L.; Albert J.; Albicocco P.; Albouy G. L.; Alderweireldt S.; Aleksa M.; Aleksandrov I. N.; Alexa C.; Alexopoulos T.; Alfonsi F.; Algren M.; Alhroob M.; Ali B.; Ali H. M. J.; Ali S.; Alibocus S. W.; Aliev M.; Alimonti G.; Alkakhi W.; Allaire C.; Allbrooke B. M. M.; Allen J. F.; Allendes Flores C. A.; Allport P. P.; Aloisio A.; Alonso F.; Alpigiani C.; Alvarez Estevez M.; Alvarez Fernandez A.; Alves Cardoso M.; Alviggi M. G.; Aly M.; Amaral Coutinho Y.; Ambler A.; Amelung C.; Amerl M.; Ames C. G.; Amidei D.; Amor Dos Santos S. P.; Amos K. R.; Ananiev V.; Anastopoulos C.; Andeen T.; Anders J. K.; Andrean S. Y.; Andreazza A.; Angelidakis S.; Angerami A.; Anisenkov A. V.; Annovi A.; Antel C.; Anthony M. T.; Antipov E.; Antonelli M.; Anulli F.; Aoki M.; Aoki T.; Pozo J. A. Aparisi; Aparo M. A.; Bella L. Aperio; Appelt C.; Apyan A.; Aranzabal N.; Val S. J. Arbiol; Arcangeletti C.; Arce A. T. H.; Arena E.; Arguin J-F.; Argyropoulos S.; Arling J. -H.; Arnaez O.; Arnold H.; Artoni G.; Asada H.; Asai K.; Asai S.; Asbah N. A.; Assahsah J.; Assamagan K.; Astalos R.; Atashi S.; Atkin R. J.; Atkinson M.; Atmani H.; Atmasiddha P. A.; Augsten K.; Auricchio S.; Auriol A. D.; Austrup V. A.; Avolio G.; Axiotis K.; Azuelos G.; Babal D.; Bachacou H.; Bachas K.; Bachiu A.; Backman F.; Badea A.; Baer T. M.; Bagnaia P.; Bahmani M.; Bailey A. J.; Bailey V. R.; Baines J. T.; Baines L.; Baker O. K.; Bakos E.; Gupta D. Bakshi; Balakrishnan V.; Balasubramanian R.; Baldin E. M.; Balek P.; Ballabene E.; Balli F.; Baltes L. M.; Balunas W. K.; Balz J.; Banas E.; Bandieramonte M.; Bandyopadhyay A.; Bansal S.; Barak L.; Barakat M.; Barberio E. L.; Barberis D.; Barbero M.; Barel M. Z.; Barends K. N.; Barillari T.; Barisits M-S.; Barklow T.; Baron P.; Moreno D. A. Baron; Baroncelli A.; Barone G.; Barr A. J.; Barr J. D.; Navarro L. Barranco; Barreiro F.; da Costa J. Barreiro Guimaraes; Barron U.; Barros Teixeira M. G.; Barsov S.; Bartels F.; Bartoldus R.; Barton A. E.; Bartos P.; Basan A.; Baselga M.; Bassalat A.; Basso M. J.; Basson C. R.; Bates R. L.; Batlamous S.; Batley J. R.; Batool B.; Battaglia M.; Battulga D.; Bauce M.; Bauer M.; Bauer P.; Hurrell L. T. Bazzano; Beacham J. B.; Beau T.; Beaucamp J. Y.; Beauchemin P. H.; Becherer F.; Bechtle P.; Beck H. P.; Becker K.; Beddall A. J.; Bednyakov V. A.; Bee C. P.; Beemster L. J.; Beermann T. A.; Begalli M.; Begel M.; Behera A.; Behr J. K.; Beirer J. F.; Beisiegel F.; Belfkir M.; Bella G.; Bellagamba L.; Bellerive A.; Bellos P.; Beloborodov K.; Benchekroun D.; Bendebba F.; Benhammou Y.; Benoit M.; Bensinger J. R.; Bentvelsen S.; Beresford L.; Beretta M.; Kuutmann E. Bergeaas; Berger N.; Bergmann B.; Beringer J.; Bernardi G.; Bernius C.; Bernlochner F. U.; Bernon F.; Guardia A. Berrocal; Berry T.; Berta P.; Berthold A.; Bertram I. A.; Bethke S.; Betti A.; Bevan A. J.; Bhalla N. K.; Bhamjee M.; Bhatta S.; Bhattacharya D. S.; Bhattarai P.; Bhopatkar V. S.; Bi R.; Bianchi R. M.; Bianco G.; Biebel O.; Bielski R.; Biglietti M.; Bindi M.; Bingul A.; Bini C.; Biondini A.; Birch-Sykes C. J.; Bird G. A.; Birman M.; Biros M.; Biryukov S.; Bisanz T.; Bisceglie E.; Biswal J. P.; Biswas D.; Bitadze A.; Bjorke K.; Bloch I.; Blocker C.; Blue A.; Blumenschein U.; Blumenthal J.; Bobbink G. J.; Bobrovnikov V. S.; Boehler M.; Boehm B.; Bogavac D.; Bogdanchikov A. G.; Bohm C.; Boisvert V.; Bokan P.; Bold T.; Bomben M.; Bona M.; Boonekamp M.; Booth C. D.; Borbely A. G.; Bordulev I. S.; Borecka-Bielska H. M.; Borissov G.; Bortoletto D.; Boscherini D.; Bosman M.; Sola J. D. Bossio; Bouaouda K.; Bouchhar N.; Boudreau J.; Bouhova-Thacker E. V.; Boumediene D.; Bouquet R.; Boveia A.; Boyd J.; Boye D.; Boyko I. R.; Bracinik J.; Brahimi N.; Brandt G.; Brandt O.; Braren F.; Brau B.; Brau J. E.; Brener R.; Brenner L.; Brenner R.; Bressler S.; Britton D.; Britzger D.; Brock I.; Brooijmans G.; Brooks W. K.; Brost E.; Brown L. M.; Bruce L. E.; Bruckler T. L.; de Renstrom P. A. Bruckman; Bruers B.; Bruni A.; Bruni G.; Bruschi M.; Bruscino N.; Buanes T.; Buat Q.; Buchin D.; Buckley A. G.; Bulekov O.; Bullard B. A.; Burdin S.; Burgard C. D.; Burger A. M.; Burghgrave B.; Burlayenko O.; Burr J. T. P.; Burton C. D.; Burzynski J. C.; Busch E. L.; Buscher V.; Bussey P. J.; Butler J. M.; Buttar C. M.; Butterworth J. M.; Buttinger W.; Vazquez C. J. Buxo; Buzykaev A. R.; Urban S. Cabrera; Cadamuro L.; Caforio D.; Cai H.; Cai Y.; Cai Y.; Cairo V. M. M.; Cakir O.; Calace N.; Calafiura P.; Calderini G.; Calfayan P.; Callea G.; Caloba L. P.; Calvet D.; Calvet S.; Calvet T. P.; Calvetti M.; Toro R. Camacho; Camarda S.; Munoz D. Camarero; Camarri P.; Camerlingo M. T.; Cameron D.; Camincher C.; Campanelli M.; Camplani A.; Canale V.; Canesse A.; Cantero J.; Cao Y.; Capocasa F.; Capua M.; Carbone A.; Cardarelli R.; Cardenas J. C. J.; Cardillo F.; Carducci G.; Carli T.; Carlino G.; Carlotto J. I.; Carlson B. T.; Carlson E. M.; Carminati L.; Carnelli A.; Carnesale M.; Caron S.; Carquin E.; Carra S.; Carratta G.; Argos F. Carrio; Carter J. W. S.; Carter T. M.; Casado M. P.; Caspar M.; Castillo F. L.; Garcia L. Castillo; Gimenez V. Castillo; Castro N. F.; Catinaccio A.; Catmore J. R.; Cavaliere V.; Cavalli N.; Cavasinni V.; Cekmecelioglu Y. C.; Celebi E.; Celli F.; Centonze M. S.; Cepaitis V.; Cerny K.; Cerqueira A. S.; Cerri A.; Cerrito L.; Cerutti F.; Cervato B.; Cervelli A.; Cesarini G.; Cetin S. A.; Chadi Z.; Chakraborty D.; Chan J.; Chan W. Y.; Chapman J. D.; Chapon E.; Chargeishvili B.; Charlton D. G.; Charman T. P.; Chatterjee M.; Chauhan C.; Chekanov S.; Chekulaev S. V.; Chelkov G. A.; Chen A.; Chen B.; Chen B.; Chen H.; Chen H.; Chen J.; Chen J.; Chen M.; Chen S.; Chen S. J.; Chen X.; Chen X.; Chen Y.; Cheng C. L.; Cheng H. C.; Cheong S.; Cheplakov A.; Cheremushkina E.; Cherepanova E.; El Moursli R. Cherkaoui; Cheu E.; Cheung K.; Chevalier L.; Chiarella V.; Chiarelli G.; Chiedde N.; Chiodini G.; Chisholm A. S.; Chitan A.; Chitishvili M.; Chizhov M. V.; Choi K.; Chomont A. R.; Chou Y.; Chow E. Y. S.; Chowdhury T.; Chu K. L.; Chu M. C.; Chu X.; Chudoba J.; Chwastowski J. J.; Cieri D.; Ciesla K. M.; Cindro V.; Ciocio A.; Cirotto F.; Citron Z. H.; Citterio M.; Ciubotaru D. A.; Ciungu B. M.; Clark A.; Clark P. J.; Clarry C.; Columbie J. M. Clavijo; Clawson S. E.; Clement C.; Clercx J.; Clissa L.; Coadou Y.; Cobal M.; Coccaro A.; Coelho Barrue R. F.; De Sa R. Coelho Lopes; Coelli S.; Cohen H.; Coimbra A. E. C.; Cole B.; Collot J.; Conde Muino P.; Connell M. P.; Connell S. H.; Connelly I. A.; Conroy E. I.; Conventi F.; Cooke H. G.; Cooper-Sarkar A. M.; Choi A. Cordeiro Oudot; Corpe L. D.; Corradi M.; Corriveau F.; Cortes-Gonzalez A.; Costa M. J.; Costanza F.; Costanzo D.; Cote B. M.; Cowan G.; Cranmer K.; Cremonini D.; Crepe-Renaudin S.; Crescioli F.; Cristinziani M.; Cristoforetti M.; Croft V.; Crosby J. E.; Crosetti G.; Cueto A.; Donszelmann T. Cuhadar; Cui H.; Cui Z.; Cunningham W. R.; Curcio F.; Czodrowski P.; Czurylo M. M.; De Sousa M. J. Da Cunha Sargedas; Da Fonseca Pinto J. V.; Da Via C.; Dabrowski W.; Dado T.; Dahbi S.; Dai T.; Dal Santo D.; Dallapiccola C.; Dam M.; D'amen G.; D'Amico V.; Damp J.; Dandoy J. R.; Daneri M. F.; Danninger M.; Dao V.; Darbo G.; Darmora S.; Das S. J.; D'Auria S.; David C.; Davidek T.; Davis-Purcell B.; Dawson I.; Day-hall H. A.; De K.; De Asmundis R.; De Biase N.; De Castro S.; De Groot N.; de Jong P.; De la Torre H.; De Maria A.; De Salvo A.; De Sanctis U.; De Santo A.; De Regie J. B. De Vivie; Dedovich D. V.; Degens J.; Deiana A. M.; Del Corso F.; Del Peso J.; Del Rio F.; Deliot F.; Delitzsch C. M.; Della Pietra M.; Della Volpe D.; Dell'Acqua A.; Dell'Asta L.; Delmastro M.; Delsart P. A.; Demers S.; Demichev M.; Denisov S. P.; D'Eramo L.; Derendarz D.; Derue F.; Dervan P.; Desch K.; Deutsch C.; Di Bello F. A.; Di Ciaccio A.; Di Ciaccio L.; Di Domenico A.; Di Donato C.; Di Girolamo A.; Di Gregorio G.; Di Luca A.; Di Micco B.; Di Nardo R.; Diaconu C.; Diamantopoulou M.; Dias F. A.; Do Vale T. Dias; Diaz M. A.; Capriles F. G. Diaz; Didenko M.; Diehl E. B.; Diehl L.; Cornell S. Diez; Pardos C. Diez; Dimitriadi C.; Dimitrievska A.; Dingfelder J.; Dinu I-M.; Dittmeier S. J.; Dittus F.; Djama F.; Djobava T.; Djuvsland J. I.; Doglioni C.; Dohnalova A.; Dolejsi J.; Dolezal Z.; Dona K. M.; Donadelli M.; Dong B.; Donini J.; D'Onofrio A.; D'Onofrio M.; Dopke J.; Doria A.; Dos Santos Fernandes N.; Dougan P.; Dova M. T.; Doyle A. T.; Draguet M. A.; Dreyer E.; Drivas-Koulouris I.; Drnevich M.; Drobac A. S.; Drozdova M.; Du D.; du Pree T. A.; Dubinin F.; Dubovsky M.; Duchovni E.; Duckeck G.; Ducu O. A.; Duda D.; Dudarev A.; Duden E. R.; D'uffizi M.; Duflot L.; Duhrssen M.; Dulsen C.; Dumitriu A. E.; Dunford M.; Dungs S.; Dunne K.; Duperrin A.; Yildiz H. Duran; Duren M.; Durglishvili A.; Dwyer B. L.; Dyckes G. I.; Dyndal M.; Dziedzic B. S.; Earnshaw Z. O.; Eberwein G. H.; Eckerova B.; Eggebrecht S.; De Souza E. Egidio Purcino; Ehrke L. F.; Eigen G.; Einsweiler K.; Ekelof T.; Ekman P. A.; El Farkh S.; El Ghazali Y.; El Jarrari H.; El Moussaouy A.; Ellajosyula V.; Ellert M.; Ellinghaus F.; Ellis N.; Elmsheuser J.; Elsing M.; Emeliyanov D.; Enari Y.; Ene I.; Epari S.; Erdmann J.; Erland P. A.; Errenst M.; Escalier M.; Escobar C.; Etzion E.; Evans G.; Evans H.; Evans L. S.; Evans M. O.; Ezhilov A.; Ezzarqtouni S.; Fabbri F.; Fabbri L.; Facini G.; Fadeyev V.; Fakhrutdinov R. M.; Falciano S.; Coelho L. F. Falda Ulhoa; Falke P. J.; Faltova J.; Fan C.; Fan Y.; Fang Y.; Fanti M.; Faraj M.; Farazpay Z.; Farbin A.; Farilla A.; Farooque T.; Farrington S. M.; Fassi F.; Fassouliotis D.; Giannelli M. Faucci; Fawcett W. J.; Fayard L.; Federic P.; Federicova P.; Fedin O. L.; Fedotov G.; Feickert M.; Feligioni L.; Fellers D. E.; Feng C.; Feng M.; Feng Z.; Fenton M. J.; Fenyuk A. B.; Ferencz L.; Ferguson R. A. M.; Fernandez Luengo S. I.; Martinez P. Fernandez; Fernoux M. J. V.; Ferrando J.; Ferrari A.; Ferrari P.; Ferrari R.; Ferrere D.; Ferretti C.; Fiedler F.; Fiedler P.; Filipcic A.; Filmer E. K.; Filthaut F.; Fiolhais M. C. N.; Fiorini L.; Fisher W. C.; Fitschen T.; Fitzhugh P. M.; Fleck I.; Fleischmann P.; Flick T.; Flores M.; Castillo L. R. Flores; De Acedo L. Flores Sanz; Follega F. M.; Fomin N.; Foo J. H.; Forland B. C.; Formica A.; Forti A. C.; Fortin E.; Fortman A. W.; Foti M. G.; Fountas L.; Fournier D.; Fox H.; Francavilla P.; Francescato S.; Franchellucci S.; Franchini M.; Franchino S.; Francis D.; Franco L.; Lima V. Franco; Franconi L.; Franklin M.; Frattari G.; Freegard A. C.; Freund W. S.; Frid Y. Y.; Friend J.; Fritzsche N.; Froch A.; Froidevaux D.; Frost J. A.; Fu Y.; Garrido S. Fuenzalida; Fujimoto M.; Torregrosa E. Fullana; Fung K. Y.; Furtado De Simas Filho E.; Furukawa M.; Fuster J.; Gabrielli A.; Gabrielli A.; Gadow P.; Gagliardi G.; Gagnon L. G.; Gallas E. J.; Gallop B. J.; Gan K. K.; Ganguly S.; Gao Y.; Walls F. M. Garay; Garcia B.; Garcia C.; Alonso A. Garcia; Caffaro A. G. Garcia; Navarro J. E. Garcia; Garcia-Sciveres M.; Gardner G. L.; Gardner R. W.; Garelli N.; Garg D.; Garg R. B.; Gargan J. M.; Garner C. A.; Garvey C. M.; Gaspar P.; Gassmann V. K.; Gaudio G.; Gautam V.; Gauzzi P.; Gavrilenko I. L.; Gavrilyuk A.; Gay C.; Gaycken G.; Gazis E. N.; Geanta A. A.; Gee C. M.; Gekow A.; Gemme C.; Genest M. H.; Gentile S.; Gentry A. D.; George S.; George W. F.; Geralis T.; Gessinger-Befurt P.; Geyik M. E.; Ghani M.; Ghneimat M.; Ghorbanian K.; Ghosal A.; Ghosh A.; Ghosh A.; Giacobbe B.; Giagu S.; Giani T.; Giannetti P.; Giannini A.; Gibson S. M.; Gignac M.; Gil D. T.; Gilbert A. K.; Gilbert B. J.; Gillberg D.; Gilles G.; Gillwald N. E. K.; Ginabat L.; Gingrich D. M.; Giordani M. P.; Giraud P. F.; Giugliarelli G.; Giugni D.; Giuli F.; Gkialas I.; Gladilin L. K.; Glasman C.; Gledhill G. R.; Glemza G.; Glisic M.; Gnesi I.; Go Y.; Goblirsch-Kolb M.; Gocke B.; Godin D.; Gokturk B.; Goldfarb S.; Golling T.; Gololo M. G. D.; Golubkov D.; Gombas J. P.; Gomes A.; Da Silva G. Gomes; Delegido A. J. Gomez; Goncalo R.; Gonella G.; Gonella L.; Gongadze A.; Gonnella F.; Gonski J. L.; Andana R. Y. Gonzalez; de la Hoz S. Gonzalez; Gonzalez Fernandez S.; Lopez R. Gonzalez; Renteria C. Gonzalez; Rodrigues M. V. Gonzalez; Gonzalez Suarez R.; Gonzalez-Sevilla S.; Rodriguez G. R. Gonzalvo; Goossens L.; Gorini B.; Gorini E.; Gorisek A.; Gosart T. C.; Goshaw A. T.; Gostkin M. I.; Goswami S.; Gottardo C. A.; Gotz S. A.; Gouighri M.; Goumarre V.; Goussiou A. G.; Govender N.; Grabowska-Bold I.; Graham K.; Gramstad E.; Grancagnolo S.; Grandi M.; Grant C. M.; Gravila P. M.; Gravili F. G.; Gray H. M.; Greco M.; Grefe C.; Gregor I. M.; Grenier P.; Grewe S. G.; Grieco C.; Grillo A. A.; Grimm K.; Grinstein S.; Grivaz J. -F.; Gross E.; Grosse-Knetter J.; Grud C.; Grundy J. C.; Guan L.; Guan W.; Gubbels C.; Rojas J. G. R. Guerrero; Guerrieri G.; Guescini F.; Gugel R.; Guhit J. A. M.; Guida A.; Guillemin T.; Guilloton E.; Guindon S.; Guo F.; Guo J.; Guo L.; Guo Y.; Gupta R.; Gupta R.; Gurbuz S.; Gurdasani S. S.; Gustavino G.; Guth M.; Gutierrez P.; Zagazeta L. F. Gutierrez; Gutsche M.; Gutschow C.; Gwenlan C.; Gwilliam C. B.; Haaland E. S.; Haas A.; Habedank M.; Haber C.; Hadavand H. K.; Hadef A.; Hadzic S.; Hagan A. I.; Hahn J. J.; Haines E. H.; Haleem M.; Haley J.; Hall J. J.; Hallewell G. D.; Halser L.; Hamano K.; Hamer M.; Hamity G. N.; Hampshire E. J.; Han J.; Han K.; Han L.; Han L.; Han S.; Han Y. F.; Hanagaki K.; Hance M.; Hangal D. A.; Hanif H.; Hank M. D.; Hankache R.; Hansen J. B.; Hansen J. D.; Hansen P. H.; Hara K.; Harada D.; Harenberg T.; Harkusha S.; Harris M. L.; Harris Y. T.; Harrison J.; Harrison N. M.; Harrison P. F.; Hartman N. M.; Hartmann N. M.; Hasegawa Y.; Hauser R.; Hawkes C. M.; Hawkings R. J.; Hayashi Y.; Hayashida S.; Hayden D.; Hayes C.; Hayes R. L.; Hays C. P.; Hays J. M.; Hayward H. S.; He F.; He M.; He Y.; He Y.; Heatley N. B.; Hedberg V.; Heggelund A. L.; Hehir N. D.; Heidegger C.; Heidegger K. K.; Heidorn W. D.; Heilman J.; Heim S.; Heim T.; Heinlein J. G.; Heinrich J. J.; Heinrich L.; Hejbal J.; Helary L.; Held A.; Hellesund S.; Helling C. M.; Hellman S.; Henderson R. C. W.; Henkelmann L.; Correia A. M. Henriques; Herde H.; Jimenez Y. Hernandez; Herrmann L. M.; Herrmann T.; Herten G.; Hertenberger R.; Hervas L.; Hesping M. E.; Hessey N. P.; Hibi H.; Hill E.; Hillier S. J.; Hinds J. R.; Hinterkeuser F.; Hirose M.; Hirose S.; Hirschbuehl D.; Hitchings T. G.; Hiti B.; Hobbs J.; Hobincu R.; Hod N.; Hodgkinson M. C.; Hodkinson B. H.; Hoecker A.; Hofer D. D.; Hofer J.; Holm T.; Holzbock M.; Hommels L. B. A. H.; Honan B. P.; Hong J.; Hong T. M.; Hooberman B. H.; Hopkins W. H.; Horii Y.; Hou S.; Howard A. S.; Howarth J.; Hoya J.; Hrabovsky M.; Hrynevich A.; Hryn'ova T.; Hsu P. J.; Hsu S. -C.; Hu Q.; Hu Y. F.; Huang S.; Huang X.; Huang X.; Huang Y.; Huang Y.; Huang Z.; Hubacek Z.; Huebner M.; Huegging F.; Huffman T. B.; Hugli C. A.; Huhtinen M.; Huiberts S. K.; Hulsken R.; Huseynov N.; Huston J.; Huth J.; Hyneman R.; Iacobucci G.; Iakovidis G.; Ibragimov I.; Iconomidou-Fayard L.; Iengo P.; Iguchi R.; Iizawa T.; Ikegami Y.; Ilic N.; Imam H.; Lezki M. Ince; Carlson T. Ingebretsen; Introzzi G.; Iodice M.; Ippolito V.; Irwin R. K.; Ishino M.; Islam W.; Issever C.; Istin S.; Ito H.; Ponce J. M. Iturbe; Iuppa R.; Ivina A.; Izen J. M.; Izzo V.; Jacka P.; Jackson P.; Jacobs R. M.; Jaeger B. P.; Jagfeld C. S.; Jain G.; Jain P.; Jakobs K.; Jakoubek T.; Jamieson J.; Janas K. W.; Javurkova M.; Jeanneau F.; Jeanty L.; Jejelava J.; Jenni P.; Jessiman C. E.; Jezequel S.; Jia C.; Jia J.; Jia X.; Jia X.; Jia Z.; Jiggins S.; Pena J. Jimenez; Jin S.; Jinaru A.; Jinnouchi O.; Johansson P.; Johns K. A.; Johnson J. W.; Jones D. M.; Jones E.; Jones P.; Jones R. W. L.; Jones T. J.; Joos H. L.; Joshi R.; Jovicevic J.; Ju X.; Junggeburth J. J.; Junkermann T.; Rozas A. Juste; Juzek M. K.; Kabana S.; Kaczmarska A.; Kado M.; Kagan H.; Kagan M.; Kahn A.; Kahn A.; Kahra C.; Kaji T.; Kajomovitz E.; Kakati N.; Kalaitzidou I.; Kalderon C. W.; Kamenshchikov A.; Kang N. J.; Kar D.; Karava K.; Kareem M. J.; Karentzos E.; Karkanias I.; Karkout O.; Karpov S. N.; Karpova Z. M.; Kartvelishvili V.; Karyukhin A. N.; Kasimi E.; Katzy J.; Kaur S.; Kawade K.; Kawale M. P.; Kawamoto C.; Kawamoto T.; Kay E. F.; Kaya F. I.; Kazakos S.; Kazanin V. F.; Ke Y.; Keaveney J. M.; Keeler R.; Kehris G. V.; Keller J. S.; Kelly A. S.; Kempster J. J.; Kennedy K. E.; Kennedy P. D.; Kepka O.; Kerridge B. P.; Kersten S.; Kersevan B. P.; Keshri S.; Keszeghova L.; Haghighat S. Ketabchi; Khan R. A.; Khandoga M.; Khanov A.; Kharlamov A. G.; Kharlamova T.; Khoda E. E.; Kholodenko M.; Khoo T. J.; Khoriauli G.; Khubua J.; Khwaira Y. A. R.; Kilgallon A.; Kim D. W.; Kim Y. K.; Kimura N.; Kingston M. K.; Kirchhoff A.; Kirfel C.; Kirfel F.; Kirk J.; Kiryunin A. E.; Kitsaki C.; Kivernyk O.; Klassen M.; Klein C.; Klein L.; Klein M. H.; Klein M.; Klein S. B.; Klein U.; Klimek P.; Klimentov A.; Klioutchnikova T.; Kluit P.; Kluth S.; Kneringer E.; Knight T. M.; Knue A.; Kobayashi R.; Kobylianskii D.; Koch S. F.; Kocian M.; Kodys P.; Koeck D. M.; Koenig P. T.; Koffas T.; Kolay O.; Kolb M.; Koletsou I.; Komarek T.; Koneke K.; Kong A. X. Y.; Kono T.; Konstantinidis N.; Kontaxakis P.; Konya B.; Kopeliansky R.; Koperny S.; Korcyl K.; Kordas K.; Koren G.; Korn A.; Korn S.; Korolkov I.; Korotkova N.; Kortman B.; Kortner O.; Kortner S.; Kostecka W. H.; Kostyukhin V. V.; Kotsokechagia A.; Kotwal A.; Koulouris A.; Kourkoumeli-Charalampidi A.; Kourkoumelis C.; Kourlitis E.; Kovanda O.; Kowalewski R.; Kozanecki W.; Kozhin A. S.; Kramarenko V. A.; Kramberger G.; Kramer P.; Krasny M. W.; Krasznahorkay A.; Kraus J. W.; Kremer J. A.; Kresse T.; Kretzschmar J.; Kreul K.; Krieger P.; Krishnamurthy S.; Krivos M.; Krizka K.; Kroeninger K.; Kroha H.; Kroll J.; Kroll J.; Krowpman K. S.; Kruchonak U.; Kruger H.; Krumnack N.; Kruse M. C.; Krzysiak J. A.; Kuchinskaia O.; Kuday S.; Kuehn S.; Kuesters R.; Kuhl T.; Kukhtin V.; Kulchitsky Y.; Kuleshov S.; Kumar M.; Kumari N.; Kupco A.; Kupfer T.; Kupich A.; Kuprash O.; Kurashige H.; Kurchaninov L. L.; Kurdysh O.; Kurochkin Y. A.; Kurova A.; Kuze M.; Kvam K.; Kvita J.; Kwan T.; Kyriacou N. G.; Laatu L. A. O.; Lacasta C.; Lacava F.; Lacker H.; Lacour D.; Lad N. N.; Ladygin E.; Laforge B.; Lagouri T.; Lahbabi F. Z.; Lai S.; Lakomiec I. K.; Lalloue N.; Lambert J. E.; Lammers S.; Lampl W.; Lampoudis C.; Lancaster A. N.; Lancon E.; Landgraf U.; Landon M. P. J.; Lang V. S.; Langenberg R. J.; Langrekken O. K. B.; Lankford A. J.; Lanni F.; Lantzsch K.; Lanza A.; Lapertosa A.; Laporte J. F.; Lari T.; Manghi F. Lasagni; Lassnig M.; Latonova V.; Laudrain A.; Laurier A.; Lawlor S. D.; Lawrence Z.; Lazaridou R.; Lazzaroni M.; Le B.; Le Boulicaut E. M.; Leban B.; Lebedev A.; LeBlanc M.; Ledroit-Guillon F.; Lee A. C. A.; Lee S. C.; Lee S.; Lee T. F.; Leeuw L. L.; Lefebvre H. P.; Lefebvre M.; Leggett C.; Miotto G. Lehmann; Leigh M.; Leight W. A.; Leinonen W.; Leisos A.; Leite M. A. L.; Leitgeb C. E.; Leitner R.; Leney K. J. C.; Lenz T.; Leone S.; Leonidopoulos C.; Leopold A.; Leroy C.; Les R.; Lester C. G.; Levchenko M.; Leveque J.; Levin D.; Levinson L. J.; Lewicki M. P.; Lewis D. J.; Li A.; Li B.; Li C.; Li C-Q.; Li H.; Li H.; Li H.; Li H.; Li H.; Li J.; Li K.; Li L.; Li M.; Li Q. Y.; Li S.; Li S.; Li T.; Li X.; Li Z.; Li Z.; Li Z.; Li Z.; Liang S.; Liang Z.; Liberatore M.; Liberti B.; Lie K.; Marin J. Lieber; Lien H.; Lin K.; Lindley R. E.; Lindon J. H.; Lipeles E.; Lipniacka A.; Lister A.; Little J. D.; Liu B.; Liu B. X.; Liu D.; Liu J. B.; Liu J. K. K.; Liu K.; Liu M.; Liu M. Y.; Liu P.; Liu Q.; Liu X.; Liu Y.; Liu Y. L.; Liu Y. W.; Merino J. Llorente; Lloyd S. L.; Lobodzinska E. M.; Loch P.; Lohse T.; Lohwasser K.; Loiacono E.; Lokajicek M.; Lomas J. D.; Long J. D.; Longarini I.; Longo L.; Longo R.; Paz I. Lopez; Solis A. Lopez; Lorenz J.; Martinez N. Lorenzo; Lory A. M.; Loseva O.; Lou X.; Lou X.; Lounis A.; Love J.; Love P. A.; Lu G.; Lu M.; Lu S.; Lu Y. J.; Lubatti H. J.; Luci C.; Alves F. L. Lucio; Lucotte A.; Luehring F.; Luise I.; Lukianchuk O.; Lundberg O.; Lund-Jensen B.; Luongo N. A.; Lutz M. S.; Lux A. B.; Lynn D.; Lyons H.; Lysak R.; Lytken E.; Lyubushkin V.; Lyubushkina T.; Lyukova M. M.; Ma H.; Ma K.; Ma L. L.; Ma W.; Ma Y.; Mac Donell D. M.; Maccarrone G.; MacDonald J. C.; Farias P. C. Machado De Abreu; Madar R.; Mader W. F.; Madula T.; Maeda J.; Maeno T.; Maguire H.; Maiboroda V.; Maio A.; Maj K.; Majersky O.; Majewski S.; Makovec N.; Maksimovic V.; Malaescu B.; Malecki Pa.; Maleev V. P.; Malek F.; Mali M.; Malito D.; Mallik U.; Maltezos S.; Malyukov S.; Mamuzic J.; Mancini G.; Manco G.; Mandalia J. P.; Mandic I.; Manhaes de Andrade Filho L.; Maniatis I. M.; Ramos J. Manjarres; Mankad D. C.; Mann A.; Mansoulie B.; Manzoni S.; Mao L.; Mapekula X.; Marantis A.; Marchiori G.; Marcisovsky M.; Marcon C.; Marinescu M.; Marjanovic M.; Marshall E. J.; Marshall Z.; Marti-Garcia S.; Martin T. A.; Martin V. J.; Latour B. Martin Dit; Martinelli L.; Martinez M.; Agullo P. Martinez; Outschoorn V. I. Martinez; Suarez P. Martinez; Martin-Haugh S.; Martoiu V. S.; Martyniuk A. C.; Marzin A.; Mascione D.; Masetti L.; Mashimo T.; Masik J.; Maslennikov A. L.; Massa L.; Massarotti P.; Mastrandrea P.; Mastroberardino A.; Masubuchi T.; Mathisen T.; Matousek J.; Matsuzawa N.; Maurer J.; Macek B.; Maximov D. A.; Mazini R.; Maznas I.; Mazza M.; Mazza S. M.; Mazzeo E.; Mc Ginn C.; Mc Gowan J. P.; Mc Kee S. P.; McDonald E. F.; McDougall A. E.; Mcfayden J. A.; McGovern R. P.; Mchedlidze G.; Mckenzie R. P.; Mclachlan T. C.; Mclaughlin D. J.; McMahon S. J.; Mcpartland C. M.; McPherson R. A.; Mehlhase S.; Mehta A.; Melini D.; Garcia B. R. Mellado; Melo A. H.; Meloni F.; Da Costa A. M. Mendes Jacques; Meng H. Y.; Meng L.; Menke S.; Mentink M.; Meoni E.; Mercado G.; Merlassino C.; Merola L.; Meroni C.; Merz G.; Meshkov O.; Metcalfe J.; Mete A. S.; Meyer C.; Meyer J-P.; Middleton R. P.; Mijovic L.; Mikenberg G.; Mikestikova M.; Mikuz M.; Mildner H.; Milic A.; Milke C. D.; Miller D. W.; Miller L. S.; Milov A.; Milstead D. A.; Min T.; Minaenko A. A.; Minashvili I. A.; Mince L.; Mincer A. I.; Mindur B.; Mineev M.; Mino Y.; Mir L. M.; Lopez M. Miralles; Mironova M.; Mishima A.; Missio M. C.; Mitra A.; Mitsou V. A.; Mitsumori Y.; Miu O.; Miyagawa P. S.; Mkrtchyan T.; Mlinarevic M.; Mlinarevic T.; Mlynarikova M.; Mobius S.; Moder P.; Mogg P.; Mohammed A. F.; Mohapatra S.; Mokgatitswane G.; Moleri L.; Mondal B.; Mondal S.; Monig G.; Monig K.; Monnier E.; Romero L. Monsonis; Berlingen J. Montejo; Montella M.; Montereali F.; Monticelli F.; Monzani S.; Morange N.; De Carvalho A. L. Moreira; Llacer M. Moreno; Martinez C. Moreno; Morettini P.; Morgenstern S.; Morii M.; Morinaga M.; Morley A. K.; Morodei F.; Morvaj L.; Moschovakos P.; Moser B.; Mosidze M.; Moskalets T.; Moskvitina P.; Moss J.; Moyse E. J. W.; Mtintsilana O.; Muanza S.; Mueller J.; Muenstermann D.; Muller R.; Mullier G. A.; Mullin A. J.; Mullin J. J.; Mungo D. P.; Perez D. Munoz; Sanchez F. J. Munoz; Murin M.; Murray W. J.; Murrone A.; Muskinja M.; Mwewa C.; Myagkov A. G.; Myers A. J.; Myers G.; Myska M.; Nachman B. P.; Nackenhorst O.; Nag A.; Nagai K.; Nagano K.; Nagle J. L.; Nagy E.; Nairz A. M.; Nakahama Y.; Nakamura K.; Nakkalil K.; Nanjo H.; Narayan R.; Narayanan E. A.; Naryshkin I.; Naseri M.; Nasri S.; Nass C.; Navarro G.; Navarro-Gonzalez J.; Nayak R.; Nayaz A.; Nechaeva P. Y.; Nechansky F.; Nedic L.; Neep T. J.; Negri A.; Negrini M.; Nellist C.; Nelson C.; Nelson K.; Nemecek S.; Nessi M.; Neubauer M. S.; Neuhaus F.; Neundorf J.; Newhouse R.; Newman P. R.; Ng C. W.; Ng Y. W. Y.; Ngair B.; Nguyen H. D. N.; Nickerson R. B.; Nicolaidou R.; Nielsen J.; Niemeyer M.; Niermann J.; Nikiforou N.; Nikolaenko V.; Nikolic-Audit I.; Nikolopoulos K.; Nilsson P.; Ninca I.; Nindhito H. R.; Ninio G.; Nisati A.; Nishu N.; Nisius R.; Nitschke J-E.; Nkadimeng E. K.; Nobe T.; Noel D. L.; Nommensen T.; Norfolk M. B.; Norisam R. R. B.; Norman B. J.; Novak J.; Novak T.; Novotny L.; Novotny R.; Nozka L.; Ntekas K.; Junes De Moura Junior N. M. J.; Nurse E.; Ocariz J.; Ochi A.; Ochoa I.; Oerdek S.; Offermann J. T.; Ogrodnik A.; Oh A.; Ohm C. C.; Oide H.; Oishi R.; Ojeda M. L.; O'Keefe M. W.; Okumura Y.; Seabra L. F. Oleiro; Pino S. A. Olivares; Damazio D. Oliveira; Goncalves D. Oliveira; Oliver J. L.; Oncel O. O.; O'Neill A. P.; Onofre A.; Onyisi P. U. E.; Oreglia M. J.; Orellana G. E.; Orestano D.; Orlando N.; Orr R. S.; O'Shea V.; Osojnak L. M.; Ospanov R.; Otero y Garzon G.; Otono H.; Ott P. S.; Ottino G. J.; Ouchrif M.; Ouellette J.; Ould-Saada F.; Owen M.; Owen R. E.; Oyulmaz K. Y.; Ozcan V. E.; Ozturk F.; Ozturk N.; Ozturk S.; Pacey H. A.; Pages A. Pacheco; Aranda C. Padilla; Padovano G.; Griso S. Pagan; Palacino G.; Palazzo A.; Palestini S.; Pan J.; Pan T.; Panchal D. K.; Pandini C. E.; Vazquez J. G. Panduro; Pandya H. D.; Pang H.; Pani P.; Panizzo G.; Paolozzi L.; Papadatos C.; Parajuli S.; Paramonov A.; Paraskevopoulos C.; Hernandez D. Paredes; Park K. R.; Park T. H.; Parker M. A.; Parodi F.; Parrish E. W.; Parrish V. A.; Parsons J. A.; Parzefall U.; Dias B. Pascual; Dominguez L. Pascual; Pasqualucci E.; Passaggio S.; Pastore F.; Pasuwan P.; Patel P.; Patel U. M.; Pater J. R.; Pauly T.; Pearkes J.; Pedersen M.; Pedro R.; Peleganchuk S. V.; Penc O.; Pender E. A.; Penski K. E.; Penzin M.; Peralva B. S.; Peixoto A. P. Pereira; Sanchez L. Pereira; Perepelitsa D. V.; Codina E. Perez; Perganti M.; Perini L.; Pernegger H.; Perrin O.; Peters K.; Peters R. F. Y.; Petersen B. A.; Petersen T. C.; Petit E.; Petousis V.; Petridou C.; Petrukhin A.; Pettee M.; Pettersson N. E.; Petukhov A.; Petukhova K.; Pezoa R.; Pezzotti L.; Pezzullo G.; Pham T. M.; Pham T.; Phillips P. W.; Piacquadio G.; Pianori E.; Piazza F.; Piegaia R.; Pietreanu D.; Pilkington A. D.; Pinamonti M.; Pinfold J. L.; Pereira B. C. Pinheiro; Pinoargote A. E. Pinto; Pintucci L.; Piper K. M.; Pirttikoski A.; Pizzi D. A.; Pizzimento L.; Pizzini A.; Pleier M. -A.; Plesanovs V.; Pleskot V.; Plotnikova E.; Poddar G.; Poettgen R.; Poggioli L.; Pokharel I.; Polacek S.; Polesello G.; Poley A.; Polifka R.; Polini A.; Pollard C. S.; Pollock Z. B.; Polychronakos V.; Pacchi E. Pompa; Ponomarenko D.; Pontecorvo L.; Popa S.; Popeneciu G. A.; Poreba A.; Quintero D. M. Portillo; Pospisil S.; Postill M. A.; Postolache P.; Potamianos K.; Potepa P. A.; Potrap I. N.; Potter C. J.; Potti H.; Poulsen T.; Poveda J.; Astigarraga M. E. Pozo; Ibanez A. Prades; Pretel J.; Price D.; Primavera M.; Martin M. A. Principe; Privara R.; Procter T.; Proffitt M. L.; Proklova N.; Prokofiev K.; Proto G.; Protopopescu S.; Proudfoot J.; Przybycien M.; Przygoda W. W.; Puddefoot J. E.; Pudzha D.; Pyatiizbyantseva D.; Qian J.; Qichen D.; Qin Y.; Qiu T.; Quadt A.; Queitsch-Maitland M.; Quetant G.; Quinn R. P.; Bolanos G. Rabanal; Rafanoharana D.; Ragusa F.; Rainbolt J. L.; Raine J. A.; Rajagopalan S.; Ramakoti E.; Ramirez-Berend I. A.; Ran K.; Rapheeha N. P.; Rasheed H.; Raskina V.; Rassloff D. F.; Rave S.; Ravina B.; Ravinovich I.; Raymond M.; Read A. L.; Readioff N. P.; Rebuzzi D. M.; Redlinger G.; Reed A. S.; Reeves K.; Reidelsturz J. A.; Reikher D.; Rej A.; Rembser C.; Renardi A.; Renda M.; Rendel M. B.; Renner F.; Rennie A. G.; Rescia A. L.; Resconi S.; Ressegotti M.; Rettie S.; Rivera J. G. Reyes; Reynolds E.; Rezanova O. L.; Reznicek P.; Ribaric N.; Ricci E.; Richter R.; Richter S.; Richter-Was E.; Ridel M.; Ridouani S.; Rieck P.; Riedler P.; Riefel E. M.; Rieger J. O.; Rijssenbeek M.; Rimoldi A.; Rimoldi M.; Rinaldi L.; Rinn T. T.; Rinnagel M. P.; Ripellino G.; Riu I.; Rivadeneira P.; Vergara J. C. Rivera; Rizatdinova F.; Rizvi E.; Roberts B. A.; Roberts B. R.; Robertson S. H.; Robinson D.; Gajardo C. M. Robles; Manzano M. Robles; Robson A.; Rocchi A.; Roda C.; Bosca S. Rodriguez; Garcia Y. Rodriguez; Rodriguez A. Rodriguez; Vera A. M. Rodriguez; Roe S.; Roemer J. T.; Roepe-Gier A. R.; Roggel J.; Rohne O.; Rojas R. A.; Roland C. P. A.; Roloff J.; Romaniouk A.; Romano E.; Romano M.; Hernandez A. C. Romero; Rompotis N.; Roos L.; Rosati S.; Rosser B. J.; Rossi E.; Rossi E.; Rossi L. P.; Rossini L.; Rosten R.; Rotaru M.; Rottler B.; Rougier C.; Rousseau D.; Rousso D.; Roy A.; Roy-Garand S.; Rozanov A.; Rozario Z. M. A.; Rozen Y.; Ruan X.; Jimenez A. Rubio; Ruby A. J.; Rivera V. H. Ruelas; Ruggeri T. A.; Ruggiero A.; Ruiz-Martinez A.; Rummler A.; Rurikova Z.; Rusakovich N. A.; Russell H. L.; Russo G.; Rutherfoord J. P.; Colmenares S. Rutherford; Rybacki K.; Rybar M.; Rye E. B.; Ryzhov A.; Iglesias J. A. Sabater; Sabatini P.; Sabetta L.; Sadrozinski H. F-W.; Tehrani F. Safai; Samani B. Safarzadeh; Safdari M.; Saha S.; Sahinsoy M.; Saimpert M.; Saito M.; Saito T.; Salamani D.; Salnikov A.; Salt J.; Salas A. Salvador; Salvatore D.; Salvatore F.; Salzburger A.; Sammel D.; Sampsonidis D.; Sampsonidou D.; Sanchez J.; Pineda A. Sanchez; Sebastian V. Sanchez; Sandaker H.; Sander C. O.; Sandesara J. A.; Sandhoff M.; Sandoval C.; Sankey D. P. C.; Sano T.; Sansoni A.; Santi L.; Santoni C.; Santos H.; Santpur S. N.; Santra A.; Saoucha K. A.; Saraiva J. G.; Sardain J.; Sasaki O.; Sato K.; Sauer C.; Sauerburger F.; Sauvan E.; Savard P.; Sawada R.; Sawyer C.; Sawyer L.; Galvan I. Sayago; Sbarra C.; Sbrizzi A.; Scanlon T.; Schaarschmidt J.; Schacht P.; Schafer U.; Schaffer A. C.; Schaile D.; Schamberger R. D.; Scharf C.; Schefer M. M.; Schegelsky V. A.; Scheirich D.; Schenck F.; Schernau M.; Scheulen C.; Schiavi C.; Schioppa E. J.; Schioppa M.; Schlag B.; Schleicher K. E.; Schlenker S.; Schmeing J.; Schmidt M. A.; Schmieden K.; Schmitt C.; Schmitt N.; Schmitt S.; Schoeffel L.; Schoening A.; Scholer P. G.; Schopf E.; Schott M.; Schovancova J.; Schramm S.; Schroeder F.; Schroer T.; Schultz-Coulon H-C.; Schumacher M.; Schumm B. A.; Schune Ph.; Schuy A. J.; Schwartz H. R.; Schwartzman A.; Schwarz T. A.; Schwemling Ph.; Schwienhorst R.; Sciandra A.; Sciolla G.; Scuri F.; Sebastiani C. D.; Sedlaczek K.; Seema P.; Seidel S. C.; Seiden A.; Seidlitz B. D.; Seitz C.; Seixas J. M.; Sekhniaidze G.; Sekula S. J.; Selem L.
A measurement of the mass of the Higgs boson combining the H -> ZZ* -> 4l and H -> gamma gamma decay channels is presented. The result is based on 140 fb(-1) of proton-proton collision data collected by the ATLAS detector during LHC run 2 at a center-of-mass energy of 13 TeV combined with the run 1 ATLAS mass measurement, performed at center-of-mass energies of 7 and 8 TeV, yielding a Higgs boson mass of 125.11 +/- 0.09(stat) +/- 0.06(syst) = 125.11 +/- 0.11 GeV. This corresponds to a 0.09% precision achieved on this fundamental parameter of the Standard Model of particle physics.
Comparison of inclusive and photon-tagged jet suppression in 5.02 TeV Pb+Pb collisions with ATLAS
(ELSEVIER, 2023/11/10) Aad G.; Abbott B.; Abeling K.; Abicht N. J.; Abidi S. H.; Aboulhorma A.; Abramowicz H.; Abreu H.; Abulaiti Y.; Acharya B. S.; Bourdarios C. Adam; Adamczyk L.; Addepalli S. V.; Addison M. J.; Adelman J.; Adiguzel A.; Adye T.; Affolder A. A.; Afik Y.; Agaras M. N.; Agarwala J.; Aggarwal A.; Agheorghiesei C.; Ahmad A.; Ahmadov F.; Ahmed W. S.; Ahuja S.; Ai X.; Aielli G.; Aikot A.; Tamlihat M. Ait; Aitbenchikh B.; Aizenberg I.; Akbiyik M.; Akesson T. P. A.; Akimov A. V.; Akiyama D.; Akolkar N. N.; Al Khoury K.; Alberghi G. L.
Parton energy loss in the quark-gluon plasma (QGP) is studied with a measurement of photon-tagged jet production in 1.7 nb-1 of Pb+Pb data and 260 pb-1 of pp data, both at root sNN = 5.02 TeV, with the ATLAS detector. The process pp -> gamma +jet+X and its analogue in Pb+Pb collisions is measured in events containing an isolated photon with transverse momentum (pT) above 50 GeV and reported as a function of jet pT. This selection results in a sample of jets with a steeply falling pT distribution that are mostly initiated by the showering of quarks. The pp and Pb+Pb measurements are used to report the nuclear modification factor, RAA, and the fractional energy loss, Sloss, for photon-tagged jets. In addition, the results are compared with the analogous ones for inclusive jets, which have a significantly smaller quark-initiated fraction. The RAA and Sloss values are found to be significantly different between those for photon-tagged jets and inclusive jets, demonstrating that energy loss in the QGP is sensitive to the colour-charge of the initiating parton. The results are also compared with a variety of theoretical models of colour-charge-dependent energy loss. (c) 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons .org /licenses /by /4 .0/). Funded by SCOAP3.
Constraints on spin-0 dark matter mediators and invisible Higgs decays using ATLAS 13 TeV pp collision data with two top quarks and missing transverse momentum in the final state
(SPRINGER, 2023/06/13) Aad G.; Abbott B.; Abbott D. C.; Abeling K.; Abidi S. H.; Aboulhorma A.; Abramowicz H.; Abreu H.; Abulaiti Y.; Abusleme Hoffman A. C.; Acharya B. S.; Achkar B.; Adam L.; Adam Bourdarios C.; Adamczyk L.; Adamek L.; Addepalli S. V.; Adelman J.; Adiguzel A.; Adorni S.; Adye T.; Affolder A. A.; Afik Y.; Agaras M. N.; Agarwala J.; Aggarwal A.; Agheorghiesei C.; Aguilar-Saavedra J. A.; Ahmad A.; Ahmadov F.; Ahmed W. S.; Ai X.; Aielli G.; Aizenberg I.; Akbiyik M.; Akesson T. P. A.; Akimov A. V.; Al Khoury K.; Alberghi G. L.; Albert J.
This paper presents a statistical combination of searches targeting final states with two top quarks and invisible particles, characterised by the presence of zero, one or two leptons, at least one jet originating from a b-quark and missing transverse momentum. The analyses are searches for phenomena beyond the Standard Model consistent with the direct production of dark matter in pp collisions at the LHC, using 139 fb(-1) of data collected with the ATLAS detector at a centre-of-mass energy of 13 TeV. The results are interpreted in terms of simplified dark matter models with a spin-0 scalar or pseudoscalar mediator particle. In addition, the results are interpreted in terms of upper limits on the Higgs boson invisible branching ratio, where the Higgs boson is produced according to the StandardModel in associationwith a pair of top quarks. For scalar (pseudoscalar) dark matter models, with all couplings set to unity, the statistical combination extends the mass range excluded by the best of the individual channels by 50 (25) GeV, excluding mediator masses up to 370 GeV. In addition, the statistical combination improves the expected coupling exclusion reach by 14% (24%), assuming a scalar (pseudoscalar) mediator mass of 10 GeV. An upper limit on the Higgs boson invisible branching ratio of 0.38 (0.30(-0.09)(+0.13)) is observed (expected) at 95% confidence level.
Constraints on the Higgs boson self-coupling from single- and double-Higgs production with the ATLAS detector using pp collisions at?s=13 TeV
(ELSEVIER, 2023/08/10) Aad G.; Abbott B.; Abbott D. C.; Abeling K.; Abidi S. H.; Aboulhorma A.; Abramowicz H.; Abreu H.; Abulaiti Y.; Abusleme Hoffman A. C.; Acharya B. S.; Achkar B.; Adam L.; Adam Bourdarios C.; Adamczyk L.; Adamek L.; Addepalli S. V.; Adelman J.; Adiguzel A.; Adorni S.; Adye T.; Affolder A. A.; Afik Y.; Agaras M. N.; Agarwala J.; Aggarwal A.; Agheorghiesei C.; Aguilar-Saavedra J. A.; Ahmad A.; Ahmadov F.; Ahmed W. S.; Ai X.; Aielli G.; Aizenberg I.; Akbiyik M.; Akesson T. P. A.; Akimov A. V.; Al Khoury K.; Alberghi G. L.; Albert J.
Constraints on the Higgs boson self-coupling are set by combining double-Higgs boson analyses in the bb over bar bb over bar , bb over bar & tau;+& tau;- and bb over bar & gamma; & gamma; decay channels with single-Higgs boson analyses targeting the & gamma;& gamma;, Z Z*, W W *, & tau;+& tau;- and bb over bar decay channels. The data used in these analyses were recorded by the ATLAS detector at the LHC in proton-proton collisions at & RADIC;s = 13 TeV and correspond to an integrated luminosity of 126-139 fb-1. The combination of the double-Higgs analyses sets an upper limit of & mu;HH < 2.4 at 95% confidence level on the double-Higgs production cross-section normalised to its Standard Model prediction. Combining the single-Higgs and double-Higgs analyses, with the assumption that new physics affects only the Higgs boson self-coupling (& lambda;HHH), values outside the interval -0.4 < & kappa;& lambda; = (& lambda;HHH/& lambda;SM H H H ) < 6.3 are excluded at 95% confidence level. The combined single-Higgs and double-Higgs analyses provide results with fewer assumptions, by adding in the fit more coupling modifiers introduced to account for the Higgs boson interactions with the other Standard Model particles. In this relaxed scenario, the constraint becomes -1.4 < & kappa;& lambda; < 6.1 at 95% CL. & COPY; 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons .org /licenses /by /4 .0/). Funded by SCOAP3.
Cross-section measurements for the production of a Z boson in association with high-transverse-momentum jets in pp collisions at ?s=13 TeV with the ATLAS detector
(SPRINGER, 2023/06/14) Aad G.; Abbott B.; Abbott D. C.; Abeling K.; Abidi S. H.; Aboulhorma A.; Abramowicz H.; Abreu H.; Abulaiti Y.; Abusleme Hoffman A. C.; Acharya B. S.; Achkar B.; Adam L.; Adam Bourdarios C.; Adamczyk L.; Adamek L.; Addepalli S. V.; Adelman J.; Adiguzel A.; Adorni S.; Adye T.; Affolder A. A.; Afik Y.; Agaras M. N.; Agarwala J.; Aggarwal A.; Agheorghiesei C.; Aguilar-Saavedra J. A.; Ahmad A.; Ahmadov F.; Ahmed W. S.; Ai X.; Aielli G.; Aizenberg I.; Akbiyik M.; Akesson T. P. A.; Akimov A. V.; Al Khoury K.; Alberghi G. L.; Albert J.
Cross-section measurements for a Z boson produced in association with high-transverse-momentum jets ((pT) >= 100 GeV) and decaying into a charged-lepton pair (e(+) e(-), mu(+)mu(-)) are presented. The measurements are performed using proton-proton collisions at root s = 13TeV corresponding to an integrated luminosity of 139 fb(-1) collected by the ATLAS experiment at the LHC. Measurements of angular correlations between the Z boson and the closest jet are performed in events with at least one jet with (pT) >= 500 GeV. Event topologies of particular interest are the collinear emission of a Z boson in dijet events and a boosted Z boson recoiling against a jet. Fiducial cross sections are compared with state-of-the-art theoretical predictions. The data are found to agree with next-to-nextto-leading-order predictions by NNLOjet and with the next-to-leading-order multi-leg generators MadGraph5_aMC@NLO and Sherpa.
Differential t(t)over-tilde cross-section measurements using boosted top quarks in the all-hadronic final state with 139 fb-1 of ATLAS data
(SPRINGER, 2023/04/18) Aad G.; Abbott B.; Abbott D. C.; Abud A. Abed; Abeling K.; Abhayasinghe D. K.; Abidi S. H.; Aboulhorma A.; Abramowicz H.; Abreu H.; Abulaiti Y.; Hoffman A. C. Abusleme; Acharya B. S.; Achkar B.; Adam L.; Bourdarios C. Adam; Adamczyk L.; Adamek L.; Addepalli S. V.; Adelman J.; Adiguzel A.; Adorni S.; Adye T.; Affolder A. A.; Afik Y.; Agaras M. N.; Agarwala J.; Aggarwal A.; Agheorghiesei C.; Aguilar-Saavedra J. A.; Ahmad A.; Ahmadov F.; Ahmed W. S.; Ai X.; Aielli G.; Aizenberg I.; Akbiyik M.; Akesson T. P. A.; Akimov A. V.; Al Khoury K.
Measurements of single-, double-, and triple-differential cross-sections are presented for boosted top-quark pair-production in 13 TeV proton-proton collisions recorded by the ATLAS detector at the LHC. The top quarks are observed through their hadronic decay and reconstructed as large-radius jets with the leading jet having transverse momentum (p(T)) greater than 500 GeV. The observed data are unfolded to remove detector effects. The particle-level cross-section, multiplied by the t (t) over bar branching fraction and measured in a fiducial phase space defined by requiring the leading and second-leading jets to have p(T)> 500 GeV and p(T)> 350 GeV, respectively, is 331 +/- 3(stat.) +/- 39(syst.) fb. This is approximately 20% lower than the prediction of 398(-49)(+48) fb by Powheg+Pythia 8 with next-to-leading-order (NLO) accuracy but consistent within the theoretical uncertainties. Results are also presented at the parton level, where the effects of top-quark decay, parton showering, and hadronization are removed such that they can be compared with fixed-order next-to-next-to-leading-order (NNLO) calculations. The parton-level cross-section, measured in a fiducial phase space similar to that at particle level, is 1.94 +/- 0.02(stat.) +/- 0.25(syst.) pb. This agrees with the NNLO prediction of 1.96(-0.17)(+0.02) pb. Reasonable agreement with the differential cross-sections is found for most NLO models, while the NNLO calculations are generally in better agreement with the data. The differential cross-sections are interpreted using a Standard Model effective field-theory formalism and limits are set on Wilson coefficients of several four-fermion operators.
Evidence for the charge asymmetry in pp ? t(t)over-bar production at ?s=13 TeV with the ATLAS detector
(SPRINGER, 2023/08/16) Aad G.; Abbott B.; Abbott D. C.; Abeling K.; Abidi S. H.; Aboulhorma A.; Abramowicz H.; Abreu H.; Abulaiti Y.; Abusleme Hoffman A. C.; Acharya B. S.; Achkar B.; Adam L.; Adam Bourdarios C.; Adamczyk L.; Adamek L.; Addepalli S. V.; Adelman J.; Adiguzel A.; Adorni S.; Adye T.; Affolder A. A.; Afik Y.; Agaras M. N.; Agarwala J.; Aggarwal A.; Agheorghiesei C.; Aguilar-Saavedra J. A.; Ahmad A.; Ahmadov F.; Ahmed W. S.; Ai X.; Aielli G.; Aizenberg I.; Akbiyik M.; Akesson T. P. A.; Akimov A. V.; Al Khoury K.; Alberghi G. L.; Albert J.
Inclusive and differential measurements of the top-antitop ( t (t) over bar) charge asymmetry A(C)(t (t) over bar) and the leptonic asymmetry A(C)(l (l) over bar) are presented in proton-proton collisions at root s = 13 TeV recorded by the ATLAS experiment at the CERN Large Hadron Collider. The measurement uses the complete Run 2 dataset, corresponding to an integrated luminosity of 139 fb(-1), combines data in the single-lepton and dilepton channels, and employs reconstruction techniques adapted to both the resolved and boosted topologies. A Bayesian unfolding procedure is performed to correct for detector resolution and acceptance effects. The combined inclusive t (t) over bar charge asymmetry is measured to be A(C)(t (t) over bar) = 0.0068 +/- 0.0015, which differs from zero by 4.7 standard deviations. Differential measurements are performed as a function of the invariant mass, transverse momentum and longitudinal boost of the t (t) over bar system. Both the inclusive and differential measurements are found to be compatible with the Standard Model predictions, at next-to-next-to-leading order in quantum chromodynamics perturbation theory with next-to-leading-order electroweak corrections. The measurements are interpreted in the framework of the Standard Model effective field theory, placing competitive bounds on several Wilson coefficients.
Evidence of off-shell Higgs boson production from ZZ leptonic decay channels and constraints on its total width with the ATLAS detector
(ELSEVIER, 2023/11/10) Aad G.; Abbott B.; Abeling K.; Abidi S. H.; Aboulhorma A.; Abramowicz H.; Abreu H.; Abulaiti Y.; Abusleme Hoffman A. C.; Acharya B. S.; Bourdarios C. Adam; Adamczyk L.; Adamek L.; Addepalli S. V; Adelman J.; Adiguzel A.; Adorni S.; Adye T.; Affolder A. A.; Afik Y.; Agaras M. N.; Agarwala J.; Aggarwal A.; Agheorghiesei C.; Aguilar-Saavedra J. A.; Ahmad A.; Ahmadov F.; Ahmed W. S.; Ahuja S.; Ai X.; Aielli G.; Tamlihat M. Ait; Aitbenchikh B.; Aizenberg I; Akbiyik M.; Akesson T. P. A.; Akimov A. V; Akolkar N. N.; Al Khoury K.; Alberghi G. L.
This Letter reports on a search for off-shell production of the Higgs boson using 139 fb(-1) of pp collision data at root s = 13 TeV collected by the ATLAS detector at the Large Hadron Collider. The signature is a pair of Z bosons, with contributions from both the production and subsequent decay of a virtual Higgs boson and the interference of that process with other processes. The two observable final states are ZZ -> 4l and Z Z -> 2l2 nu with l = e or mu. In the ZZ -> 4l final state, a dense Neural Network is used to enhance analysis sensitivity with respect to matrix element-based discrimination. The background-only hypothesis is rejected with an observed (expected) significance of 3.3 (2.2) standard deviations, representing experimental evidence for off-shell Higgs boson production. Assuming that no new particles enter the production of the virtual Higgs boson, its total width can be deduced from the measurement of its off-shell production cross-section. The measured total width of the Higgs boson is 4.5(-2.5)(+3.3) MeV, and the observed (expected) upper limit on the total width is found to be 10.5 (10.9) MeV at 95% confidence level. (c) 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
Evidence of pair production of longitudinally polarised vector bosons and study of CP properties in ZZ ? 4l events with the ATLAS detector at ?s=13 TeV
(SPRINGER, 2023/12/15) Aad G.; Abbott B.; Abeling K.; Abicht N. J.; Abidi S. H.; Aboulhorma A.; Abramowicz H.; Abreu H.; Abulaiti Y.; Acharya B. S.; Bourdarios C. Adam; Adamczyk L.; Addepalli S. V; Addison M. J.; Adelman J.; Adiguzel A.; Adye T.; Afolder A. A.; Afk Y.; Agaras M. N.; Agarwala J.; Aggarwal A.; Agheorghiesei C.; Ahmad A.; Ahmadov F.; Ahmed W. S.; Ahuja S.; Ai X.; Aielli G.; Aikot A.; Tamlihat M. Ait; Aitbenchikh B.; Aizenberg I; Akbiyik M.; Akesson T. P. A.; Akimov A. V; Akiyama D.; Akolkar N. N.; Al Khoury K.; Alberghi G. L.
A study of the polarisation and CP properties in ZZ production is presented. The used data set corresponds to an integrated luminosity of 140 fb(-1) of proton-proton collisions at a centre-of-mass energy of 13TeV recorded by the ATLAS detector at the Large Hadron Collider. The ZZ candidate events are reconstructed using two same-flavour opposite-charge electron or muon pairs. The production of two longitudinally polarised Z bosons is measured with a significance of 4.3 standard deviations, and its cross-section is measured in a fiducial phase space to be 2.45 +/- 0.60 fb, consistent with the next-to-leadingorder Standard Model prediction. The inclusive differential cross-section as a function of a CP-sensitive angular observable is also measured. The results are used to constrain anomalous CP-odd neutral triple gauge couplings.
Exclusive dielectron production in ultraperipheral Pb plus Pb collisions at ?sNN=5.02 TeV with ATLAS
(SPRINGER, 2023/06/27) Aad G.; Abbott B.; Abbott D. C.; Abeling K.; Abidi S. H.; Aboulhorma A.; Abramowicz H.; Abreu H.; Abulaiti Y.; Abusleme Hoffman A. C.; Acharya B. S.; Achkar B.; Adam L.; Adam Bourdarios C.; Adamczyk L.; Adamek L.; Addepalli S. V.; Adelman J.; Adiguzel A.; Adorni S.; Adye T.; Affolder A. A.; Afik Y.; Agaras M. N.; Agarwala J.; Aggarwal A.; Agheorghiesei C.; Aguilar-Saavedra J. A.; Ahmad A.; Ahmadov F.; Ahmed W. S.; Ai X.; Aielli G.; Aizenberg I.; Akbiyik M.; Akesson T. P. A.; Akimov A. V.; Al Khoury K.; Alberghi G. L.; Albert J.
Exclusive production of dielectron pairs, gamma gamma -> e(+) e(-), is studied using L-int = 1.72 nb(-1) of data from ultraperipheral collisions of lead nuclei at root s(NN) = 5.02TeV recorded by the ATLAS detector at the LHC. The process of interest proceeds via photon-photon interactions in the strong electromagnetic fields of relativistic lead nuclei. Dielectron production is measured in the fiducial region defined by following requirements: electron transverse momentum p(T)(e) > 2.5 GeV, absolute electron pseudorapidity |eta(e)| < 2.5, dielectron invariant mass m(ee) > 5 GeV, and dielectron transverse momentum p(T)(ee) < 2 GeV. Differential cross-sections are measured as a function of mee, average peT, absolute dielectron rapidity |y(ee)|, and scattering angle in the dielectron rest frame, | cos theta* |, in the inclusive sample, and also with a requirement of no activity in the forward direction. The total integrated fiducial cross-section is measured to be 215 +/- 1(stat.) (+23)(-20)(syst.) +/- 4(lumi.) mu b. Within experimental uncertainties the measured integrated cross-section is in good agreement with the QED predictions from the Monte Carlo programs Starlight and SuperChic, confirming the broad features of the initial photon fluxes. The differential cross-sections show systematic differences from these predictions which are more pronounced at high |y(ee)| and | cos theta* | values.
Inclusive and differential cross-sections for dilepton t(t)over-bar production measured in ?s=13 TeV pp collisions with the ATLAS detector
(SPRINGER, 2023/07/17) Aad G.; Abbott B.; Abeling K.; Abicht N. J.; Abidi S. H.; Aboulhorma A.; Abramowicz H.; Abreu H.; Abulaiti Y.; Abusleme Hoffman A. C.; Acharya B. S.; Adam Bourdarios C.; Adamczyk L.; Adamek L.; Addepalli S. V.; Addison M. J.; Adelman J.; Adiguzel A.; Adorni S.; Adye T.; Affolder A. A.; Afik Y.; Agaras M. N.; Agarwala J.; Aggarwal A.; Agheorghiesei C.; Ahmad A.; Ahmadov F.; Ahmed W. S.; Ahuja S.; Ai X.; Aielli G.; Ait Tamlihat M.; Aitbenchikh B.; Aizenberg I.; Akbiyik M.; Akesson T. P. A.; Akimov A. V.; Akiyama D.; Akolkar N. N.
Differential and double-differential distributions of kinematic variables of leptons from decays of top-quark pairs (t (t) over bar) are measured using the full LHC Run 2 data sample collected with the ATLAS detector. The data were collected at a pp collision energy of root s = 13TeV and correspond to an integrated luminosity of 140 fb(-1). The measurements use events containing an oppositely charged e mu pair and b-tagged jets. The results are compared with predictions from several Monte Carlo generators. While no prediction is found to be consistent with all distributions, a better agreement with measurements of the lepton p(T) distributions is obtained by reweighting the t (t) over bar sample so as to reproduce the top-quark p(T) distribution from an NNLO calculation. The inclusive top-quark pair production cross-section is measured as well, both in a fiducial region and in the full phase-space. The total inclusive cross-section is found to be sigma(t (t) over bar) = 829 +/- 1 (stat) +/- 13 (syst) +/- 8 (lumi) +/- 2 (beam) pb, where the uncertainties are due to statistics, systematic effects, the integrated luminosity and the beam energy. This is in excellent agreement with the theoretical expectation.
Integrated and differential fiducial cross-section measurements for the vector boson fusion production of the Higgs boson in the H ? WW* ? e??? decay channel at 13 TeV with the ATLAS detector
(AMER PHYSICAL SOC, 2023/10/11) Aad G.; Abbott B.; Abeling K.; Abicht N. J.; Abidi S. H.; Aboulhorma A.; Abramowicz H.; Abreu H.; Abulaiti Y.; Acharya B. S.; Bourdarios C. Adam; Adamczyk L.; Addepalli S. V.; Addison M. J.; Adelman J.; Adiguzel A.; Adye T.; Affolder A. A.; Afik Y.; Agaras M. N.; Agarwala J.; Aggarwal A.; Agheorghiesei C.; Ahmad A.; Ahmadov F.; Ahmed W. S.; Ahuja S.; Ai X.; Aielli G.; Aikot A.; Tamlihat M. Ait; Aitbenchikh B.; Aizenberg I.; Akbiyik M.; Akesson T. P. A.; Akimov A. V.; Akiyama D.; Akolkar N. N.; Al Khoury K.; Alberghi G. L.
The vector-boson production cross section for the Higgs boson decay in the H -> WW* -> e nu mu nu channel is measured as a function of kinematic observables sensitive to the Higgs boson production and decay properties as well as integrated in a fiducial phase space. The analysis is performed using the proton-proton collision data collected by the ATLAS detector in Run 2 of the LHC at root s = 13 TeV center-of-mass energy, corresponding to an integrated luminosity of 139 fb(-1). The different flavor final state is studied by selecting an electron and a muon originating from a pair of W bosons and compatible with the Higgs boson decay. The data are corrected for the effects of detector inefficiency and resolution, and the measurements are compared with different state-of-the-art theoretical predictions. The differential cross sections are used to constrain anomalous interactions described by dimension-six operators in an effective field theory.
Long-lived heavy neutral leptons from mesons in effective field theory
(SPRINGER, 2023/01/04) Beltran Rebeca; Cottin Giovanna; Carlos Helo Juan; Hirsch Martin; Titov Arsenii; Wang Zeren Simon
In the framework of the low-energy effective field theory of the Standard Model extended with heavy neutral leptons (HNLs), we calculate the production rates of HNLs from meson decays triggered by dimension-six operators. We consider both lepton number-conserving and lepton-number-violating four-fermion operators involving either a pair of HNLs or a single HNL. Assuming that HNLs are long-lived, we perform simulations and investigate the reach of the proposed far detectors at the high-luminosity LHC to (i) active-heavy neutrino mixing and (ii) the Wilson coefficients associated with the effective operators, for HNL masses below the mass of the B-meson. We further convert the latter to the associated new-physics scales. Our results show that scales in excess of hundreds of TeV and the active-heavy mixing squared as small as 10(-15 )can be probed by these experiments.
Long-lived heavy neutral leptons with a displaced shower signature at CMS
(SPRINGER, 2023/02/01) Cottin Giovanna; Helo Juan Carlos; Hirsch Martin; Pena Cristian; Wang Christina; Xie Si
We study the LHC discovery potential in the search for heavy neutral leptons (HNL) with a new signature: a displaced shower in the CMS muon detector, giving rise to a large cluster of hits forming a displaced shower. A new Delphes module is used to model the CMS detector response for such displaced decays. We reinterpret a dedicated CMS search for neutral long-lived particles decaying in the CMS muon endcap detectors for the minimal HNL scenario. We demonstrate that this new strategy is particularly sensitive to active-sterile mixings with tau leptons, due to hadronic tau decays. HNL masses between similar to 1-6 GeV can be accessed for mixings as low as vertical bar V-tau N vertical bar(2) similar to 10(-7), probing unique regions of parameter space in the tau sector.